Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Matthias Kaeding obtained his Master of Science degree at the University of Bamberg in Survey Statistics.
Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model.
Contents
Target Groups
The Author
Matthias Kaeding obtained his Master of Science degree at the University of Bamberg in Survey Statistics.„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020244608
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 22192770-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 22192770
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783658083922
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783658083922_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783658083922
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 22192770-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 110. Bestandsnummer des Verkäufers 26372212003
Anzahl: 4 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model. 120 pp. Englisch. Bestandsnummer des Verkäufers 9783658083922
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand 110. Bestandsnummer des Verkäufers 374882044
Anzahl: 4 verfügbar