Vladislav Golyanik proposes several new methods for dense non-rigid structure from motion (NRSfM) as well as alignment of point clouds. The introduced methods improve the state of the art in various aspects, i.e. in the ability to handle inaccurate point tracks and 3D data with contaminations. NRSfM with shape priors obtained on-the-fly from several unoccluded frames of the sequence and the new gravitational class of methods for point set alignment represent the primary contributions of this book.
About the Author:
Vladislav Golyanik is currently a postdoctoral researcher at the Max Planck Institute for Informatics in Saarbrücken, Germany. The current focus of his research lies on 3D reconstruction and analysis of general deformable scenes, 3D reconstruction of human body and matching problems on point sets and graphs. He is interested in machine learning (both supervised and unsupervised), physics-based methods as well as new hardware and sensors forcomputer vision and graphics (e.g., quantum computers and event cameras).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Vladislav Golyanik is currently a postdoctoral researcher at the Max Planck Institute for Informatics in Saarbrücken, Germany. The current focus of his research lies on 3D reconstruction and analysis of general deformable scenes, 3D reconstruction of human body and matching problems on point sets and graphs. He is interested in machine learning (both supervised and unsupervised), physics-based methods as well as new hardware and sensors for computer vision and graphics (e.g., quantum computers and event cameras).
<div>Vladislav Golyanik proposes several new methods for dense non-rigid structure from motion (NRSfM) as well as alignment of point clouds. The introduced methods improve the state of the art in various aspects, i.e. in the ability to handle inaccurate point tracks and 3D data with contaminations. NRSfM with shape priors obtained on-the-fly from several unoccluded frames of the sequence and the new gravitational class of methods for point set alignment represent the primary contributions of this book.</div><div><br></div><div><b>Contents</b></div><div><ul><li>Scalable Dense Non-rigid Structure from Motion</li><li>Shape Priors in Dense Non-rigid Structure from Motion</li><li>Probabilistic Point Set Registration with Prior Correspondences</li><li>Point Set Registration Relying on Principles of Particle Dynamics</li></ul></div><div><b>Target Groups</b></div><div><ul><li>Scientists and students in the fields of computer vision and graphics, machine learning, applied mathematics as well as related fields</li><li>Practitioners in industrial research and development in these fields</li></ul></div><div><b>About the Author</b></div><div><b>Vladislav Golyanik</b> is currently a postdoctoral researcher at the Max Planck Institute for Informatics in Saarbrücken, Germany. The current focus of his research lies on 3D reconstruction and analysis of general deformable scenes, 3D reconstruction of human body and matching problems on point sets and graphs. He is interested in machine learning (both supervised and unsupervised), physics-based methods as well as new hardware and sensors for computer vision and graphics (e.g., quantum computers and event cameras). </div><div><br></div>
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,69 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Toscana Books, AUSTIN, TX, USA
Paperback. Zustand: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Bestandsnummer des Verkäufers Scanned3658305665
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020252311
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. Vladislav Golyanik proposes several new methods for dense non-rigid structure from motion (NRSfM) as well as alignment of point clouds. The introduced methods improve the state of the art in various aspects, i.e. in the ability to handle inaccurate point tracks and 3D data with contaminations. NRSfM with shape priors obtained on-the-fly from several unoccluded frames of the sequence and the new gravitational class of methods for point set alignment represent the primary contributions of this book.About the Author: Vladislav Golyanik is currently a postdoctoral researcher at the Max Planck Institute for Informatics in Saarbruecken, Germany. The current focus of his research lies on 3D reconstruction and analysis of general deformable scenes, 3D reconstruction of human body and matching problems on point sets and graphs. He is interested in machine learning (both supervised and unsupervised), physics-based methods as well as new hardware and sensors forcomputer vision and graphics (e.g., quantum computers and event cameras). Vladislav Golyanik proposes several new methods for dense non-rigid structure from motion (NRSfM) as well as alignment of point clouds. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783658305666
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783658305666_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783658305666
Anzahl: 10 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Vladislav Golyanik proposes several new methods for dense non-rigid structure from motion (NRSfM) as well as alignment of point clouds. The introduced methods improve the state of the art in various aspects, i.e. in the ability to handle inaccurate point tracks and 3D data with contaminations. NRSfM with shape priors obtained on-the-fly from several unoccluded frames of the sequence and the new gravitational class of methods for point set alignment represent the primary contributions of this book.About the Author:Vladislav Golyanik is currently a postdoctoral researcher at the Max Planck Institute for Informatics in Saarbrücken, Germany. The current focus of his research lies on 3D reconstruction and analysis of general deformable scenes, 3D reconstruction of human body and matching problems on point sets and graphs. He is interested in machine learning (both supervised and unsupervised), physics-based methods as well as new hardware and sensors for computer vision and graphics (e.g., quantum computers and event cameras). 376 pp. Englisch. Bestandsnummer des Verkäufers 9783658305666
Anzahl: 2 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. Bestandsnummer des Verkäufers V9783658305666
Anzahl: 15 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 352. Bestandsnummer des Verkäufers 26378072512
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Computer vision primer: state-of-the-art methodsVladislav Golyanik is currently a postdoctoral researcher at the Max Planck Institute for Informatics in Saarbruecken, Germany. The current focus of his research lies on 3D reconstruction a. Bestandsnummer des Verkäufers 449124708
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 352. Bestandsnummer des Verkäufers 385831455
Anzahl: 4 verfügbar