In fusion plasmas, generated from heating sources or fusion products, energetic particles can excite Alfvén eigenmodes, which undermines energetic particle confinement. To reduce or avoid this problem, behaviors of energetic particles and Alfvén eigenmodes need to be studied in detail. In this book, a nonlinear gyrokinetic simulation model, which recovers the ideal magnetohydrodynamic (MHD) theory in the linear long-wavelength regime, is formulated for studying kinetic MHD processes in magnetized plasmas. This comprehensive formulation enables gyrokinetic simulation of both pressure gradient-driven and current-driven instabilities including ideal and kinetic ballooning modes, kink modes, and shear Alfvén waves, as well as their nonlinear interactions in multi-scale simulations. Implemented in the gyrokinetic toroidal code (GTC), the new formulation is verified in simulations of reversed shear Alfvén eigenmode (RSAE). The verified model is then applied to studying the linear properties of RSAE driven by density gradient of neutral beam injected fast ions in a well-diagnosed DIII-D tokamak experiment.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Wenjun Deng is currently an Associate Research Physicist at Princeton Plasma Physics Laboratory. His research interests are in the area of fusion plasma modeling and large scale computer simulation. He obtained his B.S. from University of Science and Technology of China in 2006 and his Ph.D. from University of California, Irvine in 2012.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Deng WenjunWenjun Deng is currently an Associate Research Physicist at Princeton Plasma Physics Laboratory. His research interests are in the area of fusion plasma modeling and large scale computer simulation. He obtained his B.S. fr. Bestandsnummer des Verkäufers 5136595
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In fusion plasmas, generated from heating sources or fusion products, energetic particles can excite Alfvén eigenmodes, which undermines energetic particle confinement. To reduce or avoid this problem, behaviors of energetic particles and Alfvén eigenmodes need to be studied in detail. In this book, a nonlinear gyrokinetic simulation model, which recovers the ideal magnetohydrodynamic (MHD) theory in the linear long-wavelength regime, is formulated for studying kinetic MHD processes in magnetized plasmas. This comprehensive formulation enables gyrokinetic simulation of both pressure gradient-driven and current-driven instabilities including ideal and kinetic ballooning modes, kink modes, and shear Alfvén waves, as well as their nonlinear interactions in multi-scale simulations. Implemented in the gyrokinetic toroidal code (GTC), the new formulation is verified in simulations of reversed shear Alfvén eigenmode (RSAE). The verified model is then applied to studying the linear properties of RSAE driven by density gradient of neutral beam injected fast ions in a well-diagnosed DIII-D tokamak experiment. Bestandsnummer des Verkäufers 9783659168864
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -In fusion plasmas, generated from heating sources or fusion products, energetic particles can excite Alfvén eigenmodes, which undermines energetic particle confinement. To reduce or avoid this problem, behaviors of energetic particles and Alfvén eigenmodes need to be studied in detail. In this book, a nonlinear gyrokinetic simulation model, which recovers the ideal magnetohydrodynamic (MHD) theory in the linear long-wavelength regime, is formulated for studying kinetic MHD processes in magnetized plasmas. This comprehensive formulation enables gyrokinetic simulation of both pressure gradient-driven and current-driven instabilities including ideal and kinetic ballooning modes, kink modes, and shear Alfvén waves, as well as their nonlinear interactions in multi-scale simulations. Implemented in the gyrokinetic toroidal code (GTC), the new formulation is verified in simulations of reversed shear Alfvén eigenmode (RSAE). The verified model is then applied to studying the linear properties of RSAE driven by density gradient of neutral beam injected fast ions in a well-diagnosed DIII-D tokamak experiment.Books on Demand GmbH, Überseering 33, 22297 Hamburg 148 pp. Englisch. Bestandsnummer des Verkäufers 9783659168864
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In fusion plasmas, generated from heating sources or fusion products, energetic particles can excite Alfvén eigenmodes, which undermines energetic particle confinement. To reduce or avoid this problem, behaviors of energetic particles and Alfvén eigenmodes need to be studied in detail. In this book, a nonlinear gyrokinetic simulation model, which recovers the ideal magnetohydrodynamic (MHD) theory in the linear long-wavelength regime, is formulated for studying kinetic MHD processes in magnetized plasmas. This comprehensive formulation enables gyrokinetic simulation of both pressure gradient-driven and current-driven instabilities including ideal and kinetic ballooning modes, kink modes, and shear Alfvén waves, as well as their nonlinear interactions in multi-scale simulations. Implemented in the gyrokinetic toroidal code (GTC), the new formulation is verified in simulations of reversed shear Alfvén eigenmode (RSAE). The verified model is then applied to studying the linear properties of RSAE driven by density gradient of neutral beam injected fast ions in a well-diagnosed DIII-D tokamak experiment. 148 pp. Englisch. Bestandsnummer des Verkäufers 9783659168864
Anzahl: 2 verfügbar