In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3–space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3–manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3-space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3-manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero.
Sara Maloni obtained her PhD in Mathematics at the University of Warwick. She was then a postdoctoral researcher at the Universities of Toulouse and Paris-Sud, and she will be an assistant professor at Brown University. Her research interests lie at the intersection of hyperbolic geometry, (higher) Teichmüller theory and low-dimensional topology.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Maloni SaraSara Maloni obtained her PhD in Mathematics at the University of Warwick. She was then a postdoctoral researcher at the Universities of Toulouse and Paris-Sud, and she will be an assistant professor at Brown University. He. Bestandsnummer des Verkäufers 5146998
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3¿space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3¿manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero.Books on Demand GmbH, Überseering 33, 22297 Hamburg 136 pp. Englisch. Bestandsnummer des Verkäufers 9783659302695
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3¿space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3¿manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero. 136 pp. Englisch. Bestandsnummer des Verkäufers 9783659302695
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3¿space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3¿manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero. Bestandsnummer des Verkäufers 9783659302695
Anzahl: 1 verfügbar