Verwandte Artikel zu Gluing construction and Maskit slice

Gluing construction and Maskit slice - Softcover

 
9783659302695: Gluing construction and Maskit slice

Inhaltsangabe

In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3–space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3–manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3-space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3-manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero.

Biografía del autor

Sara Maloni obtained her PhD in Mathematics at the University of Warwick. She was then a postdoctoral researcher at the Universities of Toulouse and Paris-Sud, and she will be an assistant professor at Brown University. Her research interests lie at the intersection of hyperbolic geometry, (higher) Teichmüller theory and low-dimensional topology.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Gluing construction and Maskit slice

Foto des Verkäufers

Sara Maloni
ISBN 10: 3659302694 ISBN 13: 9783659302695
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Maloni SaraSara Maloni obtained her PhD in Mathematics at the University of Warwick. She was then a postdoctoral researcher at the Universities of Toulouse and Paris-Sud, and she will be an assistant professor at Brown University. He. Bestandsnummer des Verkäufers 5146998

Verkäufer kontaktieren

Neu kaufen

EUR 48,50
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Sara Maloni
ISBN 10: 3659302694 ISBN 13: 9783659302695
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3¿space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3¿manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero.Books on Demand GmbH, Überseering 33, 22297 Hamburg 136 pp. Englisch. Bestandsnummer des Verkäufers 9783659302695

Verkäufer kontaktieren

Neu kaufen

EUR 59,00
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Sara Maloni
ISBN 10: 3659302694 ISBN 13: 9783659302695
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3¿space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3¿manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero. 136 pp. Englisch. Bestandsnummer des Verkäufers 9783659302695

Verkäufer kontaktieren

Neu kaufen

EUR 59,00
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Sara Maloni
ISBN 10: 3659302694 ISBN 13: 9783659302695
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3¿space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3¿manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the representation lies on the Maskit slice, and the formula discussed above enables us to find the asymptotic direction of the pleating rays in the Maskit slice as the bending measure tends to zero. Bestandsnummer des Verkäufers 9783659302695

Verkäufer kontaktieren

Neu kaufen

EUR 59,00
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb