An important feature of an interconnection network is its ability to efficiently simulate programs written for other architectures. Such a simulation problem can be mathematically formulated as graph embedding. Graph embedding is an important technique for studying the computational capabilities of processor interconnection networks and task distributions, which is a recent focus of research in the parallel processing area. The quality of an embedding can be measured by certain cost criteria, namely dilation and wire-length (layout). Dilation is the measure for the communication time needed when simulating one network on another. The layout of a graph embedding arises from the VLSI designs, biological models that deal with cloning and visual stimuli, parallel architecture and structural engineering. In this book we give the techniques to compute the layout of a graph embedding and apply this for certain well known interconnection networks such as circulant networks, hypercubes, folded hypercubes, grid networks and generalized Petersen graphs.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
An important feature of an interconnection network is its ability to efficiently simulate programs written for other architectures. Such a simulation problem can be mathematically formulated as graph embedding. Graph embedding is an important technique for studying the computational capabilities of processor interconnection networks and task distributions, which is a recent focus of research in the parallel processing area. The quality of an embedding can be measured by certain cost criteria, namely dilation and wire-length (layout). Dilation is the measure for the communication time needed when simulating one network on another. The layout of a graph embedding arises from the VLSI designs, biological models that deal with cloning and visual stimuli, parallel architecture and structural engineering. In this book we give the techniques to compute the layout of a graph embedding and apply this for certain well known interconnection networks such as circulant networks, hypercubes, folded hypercubes, grid networks and generalized Petersen graphs.
Dr.Micheal Arockiaraj is an Assistant Professor of Mathematics in Loyola College, Chennai. His research interests include study of embedding parameters in interconnection networks and topological indices of chemical graphs. Dr.Indra Rajasingh who is currently a Professor of Mathematics in VIT University, Chennai, India, was his research supervisor.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,81 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Arockiaraj MichealDr.Micheal Arockiaraj is an Assistant Professor of Mathematics in Loyola College, Chennai. His research interests include study of embedding parameters in interconnection networks and topological indices of chemical. Bestandsnummer des Verkäufers 5151448
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 164. Bestandsnummer des Verkäufers 26128795013
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 164. Bestandsnummer des Verkäufers 18128795023
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 164 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Bestandsnummer des Verkäufers 131792474
Anzahl: 4 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA79636593666176
Anzahl: 1 verfügbar