In this work several approaches of a stable method for construction of the diagnostic matrix for gas turbine engine are being researched, when initial data are given inexactly, and their maximal deviation estimation is known. The essence of the problem is the following: the equations in minor deviations describing the gas turbine engine give us system of linear algebraic equations AC=B, where the matrix C is called a diagnostic matrix, the matrix A components comprise the coefficients of the calculated parameters, and the matrix B components comprise the coefficients of measured parameters. However, as a rule the matrix A is sparse and ill-conditioned matrix, so there is a problem of stable inversion, as a result the problem becomes ill-posed. Therefore, methods of ill-posed problem theory are used: normal pseudosolution is searched instead of an exact solution (it is important to note that normal pseudosolution is not always approximates to the exact one) using classical Tikhonov's regularization method, however, that method causes inherent obstacles, which possible solutions are discovered. There are described 3 approaches of finding the regularization parameter.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In this work several approaches of a stable method for construction of the diagnostic matrix for gas turbine engine are being researched, when initial data are given inexactly, and their maximal deviation estimation is known. The essence of the problem is the following: the equations in minor deviations describing the gas turbine engine give us system of linear algebraic equations AC=B, where the matrix C is called a diagnostic matrix, the matrix A components comprise the coefficients of the calculated parameters, and the matrix B components comprise the coefficients of measured parameters. However, as a rule the matrix A is sparse and ill-conditioned matrix, so there is a problem of stable inversion, as a result the problem becomes ill-posed. Therefore, methods of ill-posed problem theory are used: normal pseudosolution is searched instead of an exact solution (it is important to note that normal pseudosolution is not always approximates to the exact one) using classical Tikhonov's regularization method, however, that method causes inherent obstacles, which possible solutions are discovered. There are described 3 approaches of finding the regularization parameter.
Sergey A. Andreyev, Transport and Telecommunication Institute, Latvia. Specialist in computer sciences, mathematical modelling, reliability and fault diagnosis of complicated objects and systems.Sharif E. Guseynov, Liepaja University, Latvia. Specialist in mathematical modelling, ill-posed and inverse problems, PDF, theory of optimization.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,41 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 116. Bestandsnummer des Verkäufers 26127004795
Anzahl: 4 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this work several approaches of a stable method for construction of the diagnostic matrix for gas turbine engine are being researched, when initial data are given inexactly, and their maximal deviation estimation is known. The essence of the problem is the following: the equations in minor deviations describing the gas turbine engine give us system of linear algebraic equations AC=B, where the matrix C is called a diagnostic matrix, the matrix A components comprise the coefficients of the calculated parameters, and the matrix B components comprise the coefficients of measured parameters. However, as a rule the matrix A is sparse and ill-conditioned matrix, so there is a problem of stable inversion, as a result the problem becomes ill-posed. Therefore, methods of ill-posed problem theory are used: normal pseudosolution is searched instead of an exact solution (it is important to note that normal pseudosolution is not always approximates to the exact one) using classical Tikhonov's regularization method, however, that method causes inherent obstacles, which possible solutions are discovered. There are described 3 approaches of finding the regularization parameter. 116 pp. Englisch. Bestandsnummer des Verkäufers 9783659496004
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 116 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Bestandsnummer des Verkäufers 132534180
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 116. Bestandsnummer des Verkäufers 18127004785
Anzahl: 4 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In this work several approaches of a stable method for construction of the diagnostic matrix for gas turbine engine are being researched, when initial data are given inexactly, and their maximal deviation estimation is known. The essence of the problem is the following: the equations in minor deviations describing the gas turbine engine give us system of linear algebraic equations AC=B, where the matrix C is called a diagnostic matrix, the matrix A components comprise the coefficients of the calculated parameters, and the matrix B components comprise the coefficients of measured parameters. However, as a rule the matrix A is sparse and ill-conditioned matrix, so there is a problem of stable inversion, as a result the problem becomes ill-posed. Therefore, methods of ill-posed problem theory are used: normal pseudosolution is searched instead of an exact solution (it is important to note that normal pseudosolution is not always approximates to the exact one) using classical Tikhonov's regularization method, however, that method causes inherent obstacles, which possible solutions are discovered. There are described 3 approaches of finding the regularization parameter.Books on Demand GmbH, Überseering 33, 22297 Hamburg 116 pp. Englisch. Bestandsnummer des Verkäufers 9783659496004
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this work several approaches of a stable method for construction of the diagnostic matrix for gas turbine engine are being researched, when initial data are given inexactly, and their maximal deviation estimation is known. The essence of the problem is the following: the equations in minor deviations describing the gas turbine engine give us system of linear algebraic equations AC=B, where the matrix C is called a diagnostic matrix, the matrix A components comprise the coefficients of the calculated parameters, and the matrix B components comprise the coefficients of measured parameters. However, as a rule the matrix A is sparse and ill-conditioned matrix, so there is a problem of stable inversion, as a result the problem becomes ill-posed. Therefore, methods of ill-posed problem theory are used: normal pseudosolution is searched instead of an exact solution (it is important to note that normal pseudosolution is not always approximates to the exact one) using classical Tikhonov's regularization method, however, that method causes inherent obstacles, which possible solutions are discovered. There are described 3 approaches of finding the regularization parameter. Bestandsnummer des Verkäufers 9783659496004
Anzahl: 1 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
paperback. Zustand: New. New. book. Bestandsnummer des Verkäufers ERICA82936594960066
Anzahl: 1 verfügbar