Verwandte Artikel zu Analysis & forecasting of irrigation decision behavior:...

Analysis & forecasting of irrigation decision behavior: Practical machine learning algorithms and guidelines for their implementation - Softcover

 
9783659500183: Analysis & forecasting of irrigation decision behavior: Practical machine learning algorithms and guidelines for their implementation

Inhaltsangabe

Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events.

Biografía del autor

I have expertise in machine learning techniques and their application in the field of water resources engineering and management. I completed my Ph.D. in Civil and Environmental Engineering with a major in Water Resources Engg. and Hydrology. Before that my Masters degree was in Water Resources Engg. and Bachelor's degree was in Agriculture Engg.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 23,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Analysis & forecasting of irrigation decision behavior:...

Foto des Verkäufers

Sanyogita Andriyas
ISBN 10: 3659500186 ISBN 13: 9783659500183
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events. 124 pp. Englisch. Bestandsnummer des Verkäufers 9783659500183

Verkäufer kontaktieren

Neu kaufen

EUR 54,90
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Sanyogita Andriyas
ISBN 10: 3659500186 ISBN 13: 9783659500183
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Andriyas SanyogitaI have expertise in machine learning techniques and their application in the field of water resources engineering and management. I completed my Ph.D. in Civil and Environmental Engineering with a major in Water Res. Bestandsnummer des Verkäufers 5160344

Verkäufer kontaktieren

Neu kaufen

EUR 45,45
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Sanyogita Andriyas
ISBN 10: 3659500186 ISBN 13: 9783659500183
Neu Taschenbuch
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events.Books on Demand GmbH, Überseering 33, 22297 Hamburg 124 pp. Englisch. Bestandsnummer des Verkäufers 9783659500183

Verkäufer kontaktieren

Neu kaufen

EUR 54,90
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Sanyogita Andriyas
ISBN 10: 3659500186 ISBN 13: 9783659500183
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events. Bestandsnummer des Verkäufers 9783659500183

Verkäufer kontaktieren

Neu kaufen

EUR 54,90
Währung umrechnen
Versand: EUR 61,02
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb