The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle’s control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle's control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller.
He received in 1994 his BS from the Chilean Naval Polytechnic Academy, in 2006 a MS from Federico Santa Maria University, both in electronic engineering, and his PhD in aerospace engineering from the University of Kansas, in 2013. He is a postdoc at the University of Kansas, working in nonlinear robust control for autonomous vehicles.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 23,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle's control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller. 168 pp. Englisch. Bestandsnummer des Verkäufers 9783659554056
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 168. Bestandsnummer des Verkäufers 26128182966
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 168 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Bestandsnummer des Verkäufers 131356009
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Garcia GonzaloHe received in 1994 his BS from the Chilean Naval Polytechnic Academy, in 2006 a MS from Federico Santa Maria University, both in electronic engineering, and his PhD in aerospace engineering from the University of Kansa. Bestandsnummer des Verkäufers 5164451
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 168. Bestandsnummer des Verkäufers 18128182972
Anzahl: 4 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle¿s control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller.Books on Demand GmbH, Überseering 33, 22297 Hamburg 168 pp. Englisch. Bestandsnummer des Verkäufers 9783659554056
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle's control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller. Bestandsnummer des Verkäufers 9783659554056
Anzahl: 1 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
paperback. Zustand: New. New. book. Bestandsnummer des Verkäufers ERICA82936595540576
Anzahl: 1 verfügbar