The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 23,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values. 184 pp. Englisch. Bestandsnummer des Verkäufers 9783659577482
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar G. B. VeereshDr. Veeresh Kumar G. B. is specialized in the field of Fabrication and Evaluation of Physical, Mechanical, and Tribological Characterization of Metal Matrix Composites with professional experience in disciplines of. Bestandsnummer des Verkäufers 385767858
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26400822812
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 395554243
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18400822806
Anzahl: 4 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values.Books on Demand GmbH, Überseering 33, 22297 Hamburg 184 pp. Englisch. Bestandsnummer des Verkäufers 9783659577482
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values. Bestandsnummer des Verkäufers 9783659577482
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 184 pages. 8.66x5.91x0.42 inches. In Stock. Bestandsnummer des Verkäufers 3659577480
Anzahl: 1 verfügbar