We first present with great details a three-dimensional transient model of enhanced geothermal systems (EGS) heat extraction processes. This model takes the reservoir as an equivalent porous medium while considers the local thermal non-equilibrium between solid rock matrix and fluid flowing in the fractured rock mass. One other salient feature of this model is its capability of simulating the complete subsurface thermo-hydraulic process in EGS, not only the thermo-flow in the reservoir and well boreholes, but also the heat transport in rocks enclosing the reservoir. Simulation results unravel the underlying mechanism for preferential flow or short-circuit flow forming in well-fractured, homogeneous reservoirs of different permeability values. We then perform a thorough numerical study to the effects of well layout on EGS heat extraction. Last, we discuss about the hot dry rock (HDR) heat recovery factor based on numerous simulated cases and estimate the amount of HDR geothermal resource that can be converted into electricity by EGS.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
We first present with great details a three-dimensional transient model of enhanced geothermal systems (EGS) heat extraction processes. This model takes the reservoir as an equivalent porous medium while considers the local thermal non-equilibrium between solid rock matrix and fluid flowing in the fractured rock mass. One other salient feature of this model is its capability of simulating the complete subsurface thermo-hydraulic process in EGS, not only the thermo-flow in the reservoir and well boreholes, but also the heat transport in rocks enclosing the reservoir. Simulation results unravel the underlying mechanism for preferential flow or short-circuit flow forming in well-fractured, homogeneous reservoirs of different permeability values. We then perform a thorough numerical study to the effects of well layout on EGS heat extraction. Last, we discuss about the hot dry rock (HDR) heat recovery factor based on numerous simulated cases and estimate the amount of HDR geothermal resource that can be converted into electricity by EGS.
Dr. Fangming Jiang got his Ph D from Institute of Engineering Thermophysics, Chinese Academy of Sciences (CAS) in 2001. Then he worked in IMM-GmbH (Germany), in University of Aveiro (Portugal), and in the Pennsylvania State University (USA). From 2011-present, he worked as a full professor in Guangzhou Institute of Energy Conversion, CAS.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Jiang FangmingDr. Fangming Jiang got his Ph D from Institute of Engineering Thermophysics, Chinese Academy of Sciences (CAS) in 2001. Then he worked in IMM-GmbH (Germany), in University of Aveiro (Portugal), and in the Pennsylvania S. Bestandsnummer des Verkäufers 5170541
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - We first present with great details a three-dimensional transient model of enhanced geothermal systems (EGS) heat extraction processes. This model takes the reservoir as an equivalent porous medium while considers the local thermal non-equilibrium between solid rock matrix and fluid flowing in the fractured rock mass. One other salient feature of this model is its capability of simulating the complete subsurface thermo-hydraulic process in EGS, not only the thermo-flow in the reservoir and well boreholes, but also the heat transport in rocks enclosing the reservoir. Simulation results unravel the underlying mechanism for preferential flow or short-circuit flow forming in well-fractured, homogeneous reservoirs of different permeability values. We then perform a thorough numerical study to the effects of well layout on EGS heat extraction. Last, we discuss about the hot dry rock (HDR) heat recovery factor based on numerous simulated cases and estimate the amount of HDR geothermal resource that can be converted into electricity by EGS. Bestandsnummer des Verkäufers 9783659642906
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -We first present with great details a three-dimensional transient model of enhanced geothermal systems (EGS) heat extraction processes. This model takes the reservoir as an equivalent porous medium while considers the local thermal non-equilibrium between solid rock matrix and fluid flowing in the fractured rock mass. One other salient feature of this model is its capability of simulating the complete subsurface thermo-hydraulic process in EGS, not only the thermo-flow in the reservoir and well boreholes, but also the heat transport in rocks enclosing the reservoir. Simulation results unravel the underlying mechanism for preferential flow or short-circuit flow forming in well-fractured, homogeneous reservoirs of different permeability values. We then perform a thorough numerical study to the effects of well layout on EGS heat extraction. Last, we discuss about the hot dry rock (HDR) heat recovery factor based on numerous simulated cases and estimate the amount of HDR geothermal resource that can be converted into electricity by EGS.Books on Demand GmbH, Überseering 33, 22297 Hamburg 84 pp. Englisch. Bestandsnummer des Verkäufers 9783659642906
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -We first present with great details a three-dimensional transient model of enhanced geothermal systems (EGS) heat extraction processes. This model takes the reservoir as an equivalent porous medium while considers the local thermal non-equilibrium between solid rock matrix and fluid flowing in the fractured rock mass. One other salient feature of this model is its capability of simulating the complete subsurface thermo-hydraulic process in EGS, not only the thermo-flow in the reservoir and well boreholes, but also the heat transport in rocks enclosing the reservoir. Simulation results unravel the underlying mechanism for preferential flow or short-circuit flow forming in well-fractured, homogeneous reservoirs of different permeability values. We then perform a thorough numerical study to the effects of well layout on EGS heat extraction. Last, we discuss about the hot dry rock (HDR) heat recovery factor based on numerous simulated cases and estimate the amount of HDR geothermal resource that can be converted into electricity by EGS. 84 pp. Englisch. Bestandsnummer des Verkäufers 9783659642906
Anzahl: 2 verfügbar