Three dimensional Networks-on-Chip (3D NoCs) have attracted a growing interest to solve on-chip communication demands of future multi-core embedded systems. However, 3D NoCs have not been completely accepted into the mainstream due to issues such as the high cost and complexity of manufacturing 3D vertical wires, larger memory, area and power consumption of 3D NoC components than that of conventional 2D NoC. This thesis aims at optimizing 3D NoCs by modeling and evaluating alternate NoC topologies, routing algorithms and mapping techniques to achieve optimized area, power and performance parameters (latency and throughput). Particularly, novel 3D NoC router architectures and their possible combinations have been investigated with the aim of achieving lower area and power consumption of on-chip communication components with a minimal performance trade-off. This book investigates different heterogeneous 3D NoC architectures which combine 2D and 3D routers to improve area and energy efficiency of 3D NoCs with minimal performance degradation.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Three dimensional Networks-on-Chip (3D NoCs) have attracted a growing interest to solve on-chip communication demands of future multi-core embedded systems. However, 3D NoCs have not been completely accepted into the mainstream due to issues such as the high cost and complexity of manufacturing 3D vertical wires, larger memory, area and power consumption of 3D NoC components than that of conventional 2D NoC. This thesis aims at optimizing 3D NoCs by modeling and evaluating alternate NoC topologies, routing algorithms and mapping techniques to achieve optimized area, power and performance parameters (latency and throughput). Particularly, novel 3D NoC router architectures and their possible combinations have been investigated with the aim of achieving lower area and power consumption of on-chip communication components with a minimal performance trade-off. This book investigates different heterogeneous 3D NoC architectures which combine 2D and 3D routers to improve area and energy efficiency of 3D NoCs with minimal performance degradation.
Dr Michael Opoku Agyeman received the BSc. (Hons.) in electrical and electronics engineering from KNUST, Ghana, in 2008, and the MSc. degree in embedded and distributed systems from LSBU, London, in 2009. He received the PhD from the department of computing at Glasgow Caledonian University, Glasgow, in 2014.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 23,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Three dimensional Networks-on-Chip (3D NoCs) have attracted a growing interest to solve on-chip communication demands of future multi-core embedded systems. However, 3D NoCs have not been completely accepted into the mainstream due to issues such as the high cost and complexity of manufacturing 3D vertical wires, larger memory, area and power consumption of 3D NoC components than that of conventional 2D NoC. This thesis aims at optimizing 3D NoCs by modeling and evaluating alternate NoC topologies, routing algorithms and mapping techniques to achieve optimized area, power and performance parameters (latency and throughput). Particularly, novel 3D NoC router architectures and their possible combinations have been investigated with the aim of achieving lower area and power consumption of on-chip communication components with a minimal performance trade-off. This book investigates different heterogeneous 3D NoC architectures which combine 2D and 3D routers to improve area and energy efficiency of 3D NoCs with minimal performance degradation. 180 pp. Englisch. Bestandsnummer des Verkäufers 9783659758133
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Opoku Agyeman MichaelDr Michael Opoku Agyeman received the BSc. (Hons.) in electrical and electronics engineering from KNUST, Ghana, in 2008, and the MSc. degree in embedded and distributed systems from LSBU, London, in 2009. He rece. Bestandsnummer des Verkäufers 158962208
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Three dimensional Networks-on-Chip (3D NoCs) have attracted a growing interest to solve on-chip communication demands of future multi-core embedded systems. However, 3D NoCs have not been completely accepted into the mainstream due to issues such as the high cost and complexity of manufacturing 3D vertical wires, larger memory, area and power consumption of 3D NoC components than that of conventional 2D NoC. This thesis aims at optimizing 3D NoCs by modeling and evaluating alternate NoC topologies, routing algorithms and mapping techniques to achieve optimized area, power and performance parameters (latency and throughput). Particularly, novel 3D NoC router architectures and their possible combinations have been investigated with the aim of achieving lower area and power consumption of on-chip communication components with a minimal performance trade-off. This book investigates different heterogeneous 3D NoC architectures which combine 2D and 3D routers to improve area and energy efficiency of 3D NoCs with minimal performance degradation.Books on Demand GmbH, Überseering 33, 22297 Hamburg 180 pp. Englisch. Bestandsnummer des Verkäufers 9783659758133
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Three dimensional Networks-on-Chip (3D NoCs) have attracted a growing interest to solve on-chip communication demands of future multi-core embedded systems. However, 3D NoCs have not been completely accepted into the mainstream due to issues such as the high cost and complexity of manufacturing 3D vertical wires, larger memory, area and power consumption of 3D NoC components than that of conventional 2D NoC. This thesis aims at optimizing 3D NoCs by modeling and evaluating alternate NoC topologies, routing algorithms and mapping techniques to achieve optimized area, power and performance parameters (latency and throughput). Particularly, novel 3D NoC router architectures and their possible combinations have been investigated with the aim of achieving lower area and power consumption of on-chip communication components with a minimal performance trade-off. This book investigates different heterogeneous 3D NoC architectures which combine 2D and 3D routers to improve area and energy efficiency of 3D NoCs with minimal performance degradation. Bestandsnummer des Verkäufers 9783659758133
Anzahl: 1 verfügbar