A Self-organizing map is a non-linear, unsupervised neural network that is used for data clustering and visualization of high-dimensional data. A Self-organizing map uses U-matrix to visualize the high-dimensional data and the distances between neurons on the map. However, the structure of clusters and their shapes are often distorted. For better visualization of high-dimensional data, a new approach high dimensional data visualization Self-organizing map (HVSOM) is explained. The HVSOM preserve the inter-neuron distance and better visualizes the differences between the clusters. In HVSOM, the distances between input data points on the map resemble same those in the original space.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Vikas Chaudhary is working as a Professor in Computer Engineering Department, Madda Walabu University, Bale Robe, Ethiopia. Dr. R.S. Bhatia is working as a Professor in Electrical Engineering Department, National Institute of Technology(NIT), Kurukshetra, India. Dr. Anil K. Ahlawat is working as a Professor in Computer Science & Engineering Department, Krishna Institute of Engineering & Technology(KIET), Ghaziabad, India.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: WeBuyBooks, Rossendale, LANCS, Vereinigtes Königreich
Zustand: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Bestandsnummer des Verkäufers wbs9546115827
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A Self-organizing map is a non-linear, unsupervised neural network that is used for data clustering and visualization of high-dimensional data. A Self-organizing map uses U-matrix to visualize the high-dimensional data and the distances between neurons on the map. However, the structure of clusters and their shapes are often distorted. For better visualization of high-dimensional data, a new approach high dimensional data visualization Self-organizing map (HVSOM) is explained. The HVSOM preserve the inter-neuron distance and better visualizes the differences between the clusters. In HVSOM, the distances between input data points on the map resemble same those in the original space. 52 pp. Englisch. Bestandsnummer des Verkäufers 9783659818172
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 52 pages. 8.66x5.91x0.12 inches. In Stock. Bestandsnummer des Verkäufers 3659818178
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -A Self-organizing map is a non-linear, unsupervised neural network that is used for data clustering and visualization of high-dimensional data. A Self-organizing map uses U-matrix to visualize the high-dimensional data and the distances between neurons on the map. However, the structure of clusters and their shapes are often distorted. For better visualization of high-dimensional data, a new approach high dimensional data visualization Self-organizing map (HVSOM) is explained. The HVSOM preserve the inter-neuron distance and better visualizes the differences between the clusters. In HVSOM, the distances between input data points on the map resemble same those in the original space.Books on Demand GmbH, Überseering 33, 22297 Hamburg 52 pp. Englisch. Bestandsnummer des Verkäufers 9783659818172
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - A Self-organizing map is a non-linear, unsupervised neural network that is used for data clustering and visualization of high-dimensional data. A Self-organizing map uses U-matrix to visualize the high-dimensional data and the distances between neurons on the map. However, the structure of clusters and their shapes are often distorted. For better visualization of high-dimensional data, a new approach high dimensional data visualization Self-organizing map (HVSOM) is explained. The HVSOM preserve the inter-neuron distance and better visualizes the differences between the clusters. In HVSOM, the distances between input data points on the map resemble same those in the original space. Bestandsnummer des Verkäufers 9783659818172
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. High Dimensional Data Visualization Using Self Organizing Maps | Vikas Chaudhary (u. a.) | Taschenbuch | 52 S. | Englisch | 2018 | LAP LAMBERT Academic Publishing | EAN 9783659818172 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 113739166
Anzahl: 5 verfügbar