Cervical cancer, the second most common cancer globally, is highly curable if detected early. However, rural areas face high mortality rates due to poor resources and limited screening programs. Automated diagnosis can address these gaps by distinguishing abnormal Pap smear cells based on nuclear shape. This study evaluates segmentation methods on the AGMC-TU Pap-Smear dataset, achieving a classification accuracy of 92.83% with SVM Linear and improving to 97.65% using optimized features and the FCM method. Accurate nucleus segmentation is crucial for reliable abnormal cell prediction, enhancing cervical cancer screening efficacy.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,65 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783659873713
Anzahl: 1 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Paperback. Zustand: new. Paperback. Cervical cancer, the second most common cancer globally, is highly curable if detected early. However, rural areas face high mortality rates due to poor resources and limited screening programs. Automated diagnosis can address these gaps by distinguishing abnormal Pap smear cells based on nuclear shape. This study evaluates segmentation methods on the AGMC-TU Pap-Smear dataset, achieving a classification accuracy of 92.83% with SVM Linear and improving to 97.65% using optimized features and the FCM method. Accurate nucleus segmentation is crucial for reliable abnormal cell prediction, enhancing cervical cancer screening efficacy. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783659873713
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783659873713
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783659873713
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783659873713_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26403811474
Anzahl: 4 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 72 pp. Englisch. Bestandsnummer des Verkäufers 9783659873713
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 409342797
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18403811480
Anzahl: 4 verfügbar
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Paperback. Zustand: new. Paperback. Cervical cancer, the second most common cancer globally, is highly curable if detected early. However, rural areas face high mortality rates due to poor resources and limited screening programs. Automated diagnosis can address these gaps by distinguishing abnormal Pap smear cells based on nuclear shape. This study evaluates segmentation methods on the AGMC-TU Pap-Smear dataset, achieving a classification accuracy of 92.83% with SVM Linear and improving to 97.65% using optimized features and the FCM method. Accurate nucleus segmentation is crucial for reliable abnormal cell prediction, enhancing cervical cancer screening efficacy. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9783659873713
Anzahl: 1 verfügbar