Verwandte Artikel zu Evolutionary Machine Learning in Linguistic Knowledge...

Evolutionary Machine Learning in Linguistic Knowledge Extraction - Softcover

 
9783659891038: Evolutionary Machine Learning in Linguistic Knowledge Extraction

Inhaltsangabe

This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability within a population of individual rules and within a population of rule sets.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability within a population of individual rules and within a population of rule sets.

Biografía del autor

Dr. Lamiaa H. Ahmed is a Lecturer of Computer Science at Modern Academy in Maadi, Cairo, Egypt. Computational Intelligence, Evolutionary Programming, Membrane Computing, Fuzzy Logic, Organic Computing and Java programming language are areas of interest.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Evolutionary Machine Learning in Linguistic Knowledge...

Foto des Verkäufers

Lamiaa Ahmed|Amr Badr|Mostafa Abd El-Azim
ISBN 10: 3659891037 ISBN 13: 9783659891038
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ahmed LamiaaDr. Lamiaa H. Ahmed is a Lecturer of Computer Science at Modern Academy in Maadi, Cairo, Egypt. Computational Intelligence, Evolutionary Programming, Membrane Computing, Fuzzy Logic, Organic Computing and Java programming. Bestandsnummer des Verkäufers 158248679

Verkäufer kontaktieren

Neu kaufen

EUR 50,66
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Lamiaa Ahmed
ISBN 10: 3659891037 ISBN 13: 9783659891038
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability within a population of individual rules and within a population of rule sets.Books on Demand GmbH, Überseering 33, 22297 Hamburg 140 pp. Englisch. Bestandsnummer des Verkäufers 9783659891038

Verkäufer kontaktieren

Neu kaufen

EUR 61,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Lamiaa Ahmed
ISBN 10: 3659891037 ISBN 13: 9783659891038
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability within a population of individual rules and within a population of rule sets. Bestandsnummer des Verkäufers 9783659891038

Verkäufer kontaktieren

Neu kaufen

EUR 61,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Lamiaa Ahmed
ISBN 10: 3659891037 ISBN 13: 9783659891038
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is proposing a hybrid algorithm of two fuzzy genetic-based machine learning approaches - Michigan and Pittsburgh - for designing fuzzy rule-based classification systems. The search ability of each approach is examined to efficiently find fuzzy rule-based systems with high classification accuracy. These two approaches are combined into a single hybrid algorithm. The generalization ability of fuzzy rule-based classification systems, designed by the proposed hybrid algorithm is examined on real data sets. Experimental results show that the hybrid algorithm has higher search ability within a population of individual rules and within a population of rule sets. 140 pp. Englisch. Bestandsnummer des Verkäufers 9783659891038

Verkäufer kontaktieren

Neu kaufen

EUR 61,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb