Verwandte Artikel zu Soft Computing on Reservoir Characterization &...

Soft Computing on Reservoir Characterization & Production Forecasting: Application of Higher-order Neural Network on Production Forecasting and Adaptive Genetic Algorithm for History Matching - Softcover

 
9783659917776: Soft Computing on Reservoir Characterization & Production Forecasting: Application of Higher-order Neural Network on Production Forecasting and Adaptive Genetic Algorithm for History Matching

Reseña del editor

Production forecasting and reservoir modeling play vital roles in optimal field development plan and management of petroleum reservoirs. This motivates engineers to develop computationally efficient and fast numerical methods capable of constructing history matched reservoir models producing reliable production forecasts. Relatively two new soft computing techniques successfully applied for automatic history matching and production forecasting. The first approach is artificial neural networks (ANN) based modeling, and the 2nd is genetic algorithm (GA) based optimization. A higher-order neural network (HONN) with higher-order synaptic operation (HOSO) architecture that embeds linear (conventional), quadratic (QSO) and cubic synaptic operations (CSO) used for forecasting real field oil production. For automatic history matching problem through reservoir characterization, a global optimization method called adaptive genetic algorithm (AGA) was employed. Adaptive genetic operators of AGA dynamically adjusts control parameters during evolution. The performance of both soft computing methods in achieving fast convergence rate and reduced computational efforts are presented in this book.

Biografía del autor

Dr. Chithra Chakra holds Ph.D. in Computer Science & Engineering from University of Petroleum & Energy Studies, India, working as Research Engineer in ADRIC- The Petroleum Institute, Abu Dhabi. Her research focus on reservoir modeling and simulation, evolutionary algorithms, gradient and stochastic production optimization methods.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagLAP LAMBERT Academic Publishing
  • Erscheinungsdatum2017
  • ISBN 10 365991777X
  • ISBN 13 9783659917776
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten256

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Soft Computing on Reservoir Characterization &...

Foto des Verkäufers

Chithra Chakra N C|Ki-Young Song|Madan M. Gupta
ISBN 10: 365991777X ISBN 13: 9783659917776
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Chakra N C ChithraDr. Chithra Chakra holds Ph.D. in Computer Science & Engineering from University of Petroleum & Energy Studies, India, working as Research Engineer in ADRIC- The Petroleum Institute, Abu Dhabi. Her research focus on. Bestandsnummer des Verkäufers 151429772

Verkäufer kontaktieren

Neu kaufen

EUR 56,63
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Chithra Chakra N C
ISBN 10: 365991777X ISBN 13: 9783659917776
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Production forecasting and reservoir modeling play vital roles in optimal field development plan and management of petroleum reservoirs. This motivates engineers to develop computationally efficient and fast numerical methods capable of constructing history matched reservoir models producing reliable production forecasts. Relatively two new soft computing techniques successfully applied for automatic history matching and production forecasting. The first approach is artificial neural networks (ANN) based modeling, and the 2nd is genetic algorithm (GA) based optimization. A higher-order neural network (HONN) with higher-order synaptic operation (HOSO) architecture that embeds linear (conventional), quadratic (QSO) and cubic synaptic operations (CSO) used for forecasting real field oil production. For automatic history matching problem through reservoir characterization, a global optimization method called adaptive genetic algorithm (AGA) was employed. Adaptive genetic operators of AGA dynamically adjusts control parameters during evolution. The performance of both soft computing methods in achieving fast convergence rate and reduced computational efforts are presented in this book. 256 pp. Englisch. Bestandsnummer des Verkäufers 9783659917776

Verkäufer kontaktieren

Neu kaufen

EUR 69,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Chithra Chakra N C
ISBN 10: 365991777X ISBN 13: 9783659917776
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Production forecasting and reservoir modeling play vital roles in optimal field development plan and management of petroleum reservoirs. This motivates engineers to develop computationally efficient and fast numerical methods capable of constructing history matched reservoir models producing reliable production forecasts. Relatively two new soft computing techniques successfully applied for automatic history matching and production forecasting. The first approach is artificial neural networks (ANN) based modeling, and the 2nd is genetic algorithm (GA) based optimization. A higher-order neural network (HONN) with higher-order synaptic operation (HOSO) architecture that embeds linear (conventional), quadratic (QSO) and cubic synaptic operations (CSO) used for forecasting real field oil production. For automatic history matching problem through reservoir characterization, a global optimization method called adaptive genetic algorithm (AGA) was employed. Adaptive genetic operators of AGA dynamically adjusts control parameters during evolution. The performance of both soft computing methods in achieving fast convergence rate and reduced computational efforts are presented in this book. Bestandsnummer des Verkäufers 9783659917776

Verkäufer kontaktieren

Neu kaufen

EUR 69,90
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Chithra Chakra N C
ISBN 10: 365991777X ISBN 13: 9783659917776
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 256 pages. 8.66x5.91x0.58 inches. In Stock. Bestandsnummer des Verkäufers 365991777X

Verkäufer kontaktieren

Neu kaufen

EUR 116,63
Währung umrechnen
Versand: EUR 11,86
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb