This book integrates corporate financial risk research with graph neural network (GNN) technology to address the challenges of analyzing complex financial data and the interconnections between enterprises. It explores three key areas: 1. Dynamic Graph Representation: A framework for learning dynamic graph representations based on structural roles is proposed, capturing temporal evolution and global topological dependencies, marking the first use of recurrent learning in this context.2. Momentum Spillover Effects: A dual GNN algorithm is introduced to model the dynamic, complex inter-enterprise relationships and momentum spillover effects, offering a new approach to analyzing their impact on securities market volatility.3. Financial Risk Interpretability: To overcome the black-box nature of deep learning models, a heterogeneous GNN framework is developed to generate evidence subgraphs that reveal internal and external factors affecting enterprise financial risk, enhancing model transparency. Experimental results validate the proposed methods, showing improvements across multiple tasks, while also significantly enhancing model interpretability with faster inference times.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Huaming Du received his Ph.D. degree from Southwestern University of Finance and Economics. His research interests include Causal inference, LLMs, Fintech, and graph representation learning. He has published papers in conferences and journals such as KDD, IEEE TKDE, IEEE TETC, etc.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783659941672
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers L2-9783659941672
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers L2-9783659941672
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783659941672_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 140 pp. Englisch. Bestandsnummer des Verkäufers 9783659941672
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26404172315
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 408981956
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18404172305
Anzahl: 4 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Enterprise Risk Prediction and Interpretability Research Based on GNNs | Huaming Du | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2024 | LAP LAMBERT Academic Publishing | EAN 9783659941672 | Verantwortliche Person für die EU: OmniScriptum GmbH & Co. KG, Bahnhofstr. 28, 66111 Saarbrücken, info[at]akademikerverlag[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 130683682
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book integrates corporate financial risk research with graph neural network (GNN) technology to address the challenges of analyzing complex financial data and the interconnections between enterprises. It explores three key areas: 1. Dynamic Graph Representation: A framework for learning dynamic graph representations based on structural roles is proposed, capturing temporal evolution and global topological dependencies, marking the first use of recurrent learning in this context.2. Momentum Spillover Effects: A dual GNN algorithm is introduced to model the dynamic, complex inter-enterprise relationships and momentum spillover effects, offering a new approach to analyzing their impact on securities market volatility.3. Financial Risk Interpretability: To overcome the black-box nature of deep learning models, a heterogeneous GNN framework is developed to generate evidence subgraphs that reveal internal and external factors affecting enterprise financial risk, enhancing model transparency. Experimental results validate the proposed methods, showing improvements across multiple tasks, while also significantly enhancing model interpretability with faster inference times.Books on Demand GmbH, Überseering 33, 22297 Hamburg 140 pp. Englisch. Bestandsnummer des Verkäufers 9783659941672
Anzahl: 1 verfügbar