This book focuses on analysis and design problems for high-order linear time-invariant (LTI) swarm systems (multi-agent systems) to achieve consensus, formation, containment and formation-containment. As a first step, the concepts of practical consensus and formation-containment are introduced. Unlike previous research, the formation in this book can be time-varying. A general framework for consensus, consensus tracking, formation, containment and state formation-containment is presented for the first time.
Sufficient/necessary and sufficient conditions, and approaches to designing the protocols for swarm systems to achieve these control objectives, are respectively proposed. Autonomous time-varying formation experiments using five quadrotor unmanned aerial vehicles (UAVs) are conducted in an outdoor setting to demonstrate the theoretical results.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Research interests:
Multi-agent system
Consensus control
Formation control
Containment control
Formation-containment control
Unmanned aerial vehicle
Embedded system
Previous degrees:
Ph.D. Control Science and Engineering September 2009 - July 2014
Department of Automation, Tsinghua University, Beijing, P. R. China
Supervisor: Prof. Yisheng Zhong
B.E. Automation September 2005 - July 2009
School of Automation, Chongqing University, Chongqing, P. R. China
Prizes and awards:
[1] Outstanding Graduates of Beijing, 2014
[2] Outstanding Doctoral Dissertation of Tsinghua University, 2014
[3] Academic Rookie in Department of Automation, Tsinghua University, 2014
[4] National Scholarship for Doctoral Candidate, 2013
[5] Second Scholarship of Tsinghua Zhiyou-Guanghua, 2012
[6] Second Scholarship for Graduate Summer Intern of Tsinghua University, 2012
[7] Advanced Individual of Graduate Union, Dept. of Automation,Tsinghua University, 2011
[8] Siemens A&D Scholarship, 2008
[9] First Prize in America Interdisciplinary Contest in Modeling, 2008
[10] Second Prize in China Undergraduate Mathematical Contest in Modeling, 2007
[11] Excellent Student Scholarship of Chongqing University for 6 times. 2005-2009
Journal publications:
[1] X.W. Dong, J.X. Xi, G. Lu, Y.S. Zhong, Formation control for high-order linear time-invariant multi-agent systems with time delays, IEEE Transactions on Control of Network Systems, 2014, 1(3): 232-240. (Regular paper)
[2] X.W. Dong, B.C. Yu, Z.Y. Shi, Y.S. Zhong, Time-varying formation control for unmanned aerial vehicles: Theories and applications, IEEE Transactions on Control Systems Technology, 2015, 23(1): 340-348. (IF=2.521, Q1)
[3] X.W. Dong, F.L. Meng, Z.Y. Shi, G. Lu, Y.S. Zhong, Output containment control for swarm systems with general linear dynamics: A dynamic output feedback approach, Systems & Control Letters, 2014, 71(1): 31-37. (IF=1.886, Q2)
[4] X.W. Dong, Z.Y. Shi, G. Lu, Y.S. Zhong, Time-varying formation control for high-order linear swarm systems with switching interaction topologies, IET Control Theory & Applications, 2014, 8(18): 2162-2170.
(IF=1.844, Q2)
[5] X.W. Dong, J.X. Xi, G. Lu, Y.S. Zhong, Containment analysis and design for high-order linear time-invariant singular swarm systems with time delays, International Journal of Robust and Nonlinear Control, 2014, 24(7): 1189-1204. (IF=2.652, Q1)
[6] X.W. Dong, Z.Y. Shi, G. Lu, Y.S. Zhong, Output containment analysis and design for high-order linear time-invariant swarm systems, International Journal of Robust and Nonlinear Control, in press, 2013. DOI: 10.1002/rnc.3118. (IF=2.652, Q1)
[7] X.W. Dong, Z.Y. Shi, G. Lu, Y.S. Zhong, Formation-containment analysis and design for high-order linear time-invariant swarm systems, International Journal of Robust and Nonlinear Control, in press, 2014. DOI: 10.1002/rnc.3274. (IF=2.652, Q1)
[8] X.W. Dong, J.X. Xi, Z.Y. Shi, Y.S. Zhong, Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties, time-varying delays and external disturbances, International Journal of Systems Science, 2013, 44(10): 1843-1856. (IF=1.579, Q2)
[9] X.W. Dong, Z.Y. Shi, G. Lu, Y.S. Zhong, Time-varying output formation control for high-order linear time-invariant swarm systems, Information Sciences, 2015, 298(20): 36-52. (IF=3.893, Q1)
Conference publications:
[1] X.W. Dong, J.X. Xi, Z.Y. Shi, Y.S. Zhong, Consensus for high-order time-delayed swarm systems with uncertainties and external disturbances, in Proceedings of 30th Chinese Control Conference, pp. 4852-4859, 2011.
[2] X.W. Dong, J.X. Xi, Z.Y. Shi, Y.S. Zhong, Containment analysis and design for high-order linear time-invariant singular swarm systems with time delays, in Proceedings of 31st Chinese Control Conference, pp. 6296-6302, 2012.
[3] X.W. Dong, J.X.Xi, G. Lu, Y.S. Zhong, Formation analysis and feasibility for high-order linear time-invariant swarm systems with time delays, in Proceedings of 32nd Chinese Control Conference, pp. 7023-7029, 2013.
[4] X.W. Dong, Z.Y. Shi, G. Lu, Y.S. Zhong, Output containment control for high-order linear time-invariant swarm systems, in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp. 285-290, 2013.
[5] X.W. Dong, Z.Y. Shi, G. Lu, Y.S. Zhong, Formation-containment control for high-order linear time-invariant multi-agent systems, in Proceedings of 33rd Chinese Control Conference, pp. 1190-1196, 2014.
[6] B.C. Yu, X.W. Dong, Z.Y. Shi, Y.S. Zhong, Formation control for quadrotor swarm systems: Algorithms and experiments, in Proceedings of 32nd Chinese Control Conference, pp. 7099-7104, 2013.
[7] B.C. Yu, X.W. Dong, Z.Y. Shi, Y.S. Zhong, Formation-containment control for unmanned aerial vehicle swarm system, in Proceedings of 33rd Chinese Control Conference, pp. 1517-1523, 2014.
[8] Y. Zhou, X.W. Dong, G. Lu, Y.S. Zhong, Time-varying formation control for unmanned aerial vehicles with switching interaction topologies, in Proceedings of 2014 International Conference on Unmanned Aircraft Systems, pp. 1203-1209, 2014.
Papers revised/under review:
[1] X.W. Dong, Z.Y. Shi, Z. Ren, Y.S. Zhong, Output formation-containment control for high-order linear time-invariant multi-agent systems, Systems & Control Letters, revised, 2014.
[2] X.W. Dong, Q.D. Li, Z. Ren, Y.S. Zhong, Formation-containment control for high-order linear time-invariant multi-agent systems with time delays, Journal of the Franklin Institute, under review, 2014.
[3] X.W. Dong, Z.Y. Shi, Z. Ren, Y.S. Zhong, Output formation-containment control for swarm systems with directed topologies, The 27th Chinese Control and Decision Conference, under review, 2014.
[4] X.W. Dong, Q.D. Li, Z. Ren, Y.S. Zhong, Formation-containment analysis and design forhigh-order linear time-invariant swarm systems with time delays, The 34th Chinese Control Conference, under review, 2014.
Activities:
IEEE Young Professionals Member, IEEE Member, IEEE Communications Society Member
■ Journal Reviewer
IEEE Transactions on Automatic Control,
IEEE Transactions on Cybernetics,
IEEE Transactions on Industrial Electronics,
Automatica,
Systems & Control Letters,
International Journal of Robust and Nonlinear Control,
International Journal of Systems Science,
IET Control Theory & Applications,
Asian Journal of Control
■ Conference Reviewer
American Control Conference,
IEEE Conference on Decision and Control,
Asian Control Conference,
Chinese Control Conference, Chinese Control and Decision Conference
This book focuses on analysis and design problems for high-order linear time-invariant (LTI) swarm systems (multi-agent systems) to achieve consensus, formation, containment and formation-containment. As a first step, the concepts of practical consensus and formation-containment are introduced. Unlike previous research, the formation in this book can be time-varying. A general framework for consensus, consensus tracking, formation, containment and state formation-containment is presented for the first time. Sufficient/necessary and sufficient conditions, and approaches to designing the protocols for swarm systems to achieve these control objectives, are respectively proposed. Autonomous time-varying formation experiments using five quadrotor unmanned aerial vehicles (UAVs) are conducted in an outdoor setting to demonstrate the theoretical results.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 192 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 25771363/12
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nominated by Tsinghua University as an outstanding Ph.D. thesisProposes necessary and sufficient conditions for high-order linear time-invariant swarm systems to achieve time-varying state/output formations and containmentPresents autonomou. Bestandsnummer des Verkäufers 34798758
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book focuses on analysis and design problems for high-order linear time-invariant (LTI) swarm systems (multi-agent systems) to achieve consensus, formation, containment and formation-containment. As a first step, the concepts of practical consensus and formation-containment are introduced. Unlike previous research, the formation in this book can be time-varying. A general framework for consensus, consensus tracking, formation, containment and state formation-containment is presented for the first time.Sufficient/necessary and sufficient conditions, and approaches to designing the protocols for swarm systems to achieve these control objectives, are respectively proposed. Autonomous time-varying formation experiments using five quadrotor unmanned aerial vehicles (UAVs) are conducted in an outdoor setting to demonstrate the theoretical results.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 192 pp. Englisch. Bestandsnummer des Verkäufers 9783662478356
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on analysis and design problems for high-order linear time-invariant (LTI) swarm systems (multi-agent systems) to achieve consensus, formation, containment and formation-containment. As a first step, the concepts of practical consensus and formation-containment are introduced. Unlike previous research, the formation in this book can be time-varying. A general framework for consensus, consensus tracking, formation, containment and state formation-containment is presented for the first time.Sufficient/necessary and sufficient conditions, and approaches to designing the protocols for swarm systems to achieve these control objectives, are respectively proposed. Autonomous time-varying formation experiments using five quadrotor unmanned aerial vehicles (UAVs) are conducted in an outdoor setting to demonstrate the theoretical results. 192 pp. Englisch. Bestandsnummer des Verkäufers 9783662478356
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on analysis and design problems for high-order linear time-invariant (LTI) swarm systems (multi-agent systems) to achieve consensus, formation, containment and formation-containment. As a first step, the concepts of practical consensus and formation-containment are introduced. Unlike previous research, the formation in this book can be time-varying. A general framework for consensus, consensus tracking, formation, containment and state formation-containment is presented for the first time.Sufficient/necessary and sufficient conditions, and approaches to designing the protocols for swarm systems to achieve these control objectives, are respectively proposed. Autonomous time-varying formation experiments using five quadrotor unmanned aerial vehicles (UAVs) are conducted in an outdoor setting to demonstrate the theoretical results. Bestandsnummer des Verkäufers 9783662478356
Anzahl: 1 verfügbar