Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Contents: Introduction - Orthogonal Polynomials - Chebyshev and Optimal Polynomials - Orthogonal Polynomials and Krylow Subspaces - Estimating the Spectrum and the Distribution function - Parameter Free Methods - Parameter Dependent Methods - The Stokes Problem - Approximating the A-Norm - Bibliography - Notation - Index
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 2,25 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 2,25 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 20348009-n
Anzahl: 15 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020322117
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Paperback. Zustand: new. Paperback. Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible. Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783663111092
Anzahl: 1 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783663111092
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 20348009
Anzahl: 15 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783663111092
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783663111092_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783663111092
Anzahl: 10 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 284 Index. Bestandsnummer des Verkäufers 26142298285
Anzahl: 4 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Contents: Introduction - Orthogonal Polynomials - Chebyshev and Optimal Polynomials - Orthogonal Polynomials and Krylow Subspaces - Estimating the Spectrum and the Distribution function - Parameter Free Methods - Parameter Dependent Methods - The Stokes Problem - Approximating the A-Norm - Bibliography - Notation - Index 284 pp. Deutsch. Bestandsnummer des Verkäufers 9783663111092
Anzahl: 2 verfügbar