With the popularity of the social media, a large amount of user-generated content, such as comments, is emerging, which is crucial for all industries. Recently, the development of deep learning and computing power have made it possible to handle complex data. However, there are still some including (but are not limited to): (1) How can we construct a multi-modal sentiment analysis framework? (2) How can we accurately extract aspect-sentiment quadruples? (3) How can we generate fine-grained sentiment text? To tackle these challenges, this Special Issue focuses on multi-modal sentiment analysis, aspect-sentiment extraction, interpretability, and so on. In the following, we briefly summarize the selected two papers that we believe will make significant contributions. (1) "Generative Aspect Sentiment Quad Prediction with Self-Inference Template" by Li et al., considered that current research predominantly confines templates to single sentences, limiting the model’s reasoning opportunities. Therefore, the authors introduce a self-inference template (SIT) to guide the model in thoughtful reasoning. (2) "Interpretability in Sentiment Analysis: A Self-Supervised Approach to Sentiment Cue Extraction" by Sun et al., proposes a new sentiment cue extraction (SCE) self-supervised framework, aimed at improving the interpretability of models. In conclusion, we extend our heartfelt appreciation to all the authors and reviewers who selflessly put their energy to ensure the successful completion of this Special Issue.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 2,27 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 2,27 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 48201965-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783725818235
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 48201965
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9783725818235
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9783725818235
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783725818235_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 48201965-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 48201965
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. With the popularity of the social media, a large amount of user-generated content, such as comments, is emerging, which is crucial for all industries. Recently, the development of deep learning and computing power have made it possible to handle complex data. However, there are still some including (but are not limited to): (1) How can we construct a multi-modal sentiment analysis framework? (2) How can we accurately extract aspect-sentiment quadruples? (3) How can we generate fine-grained sentiment text? To tackle these challenges, this Special Issue focuses on multi-modal sentiment analysis, aspect-sentiment extraction, interpretability, and so on. In the following, we briefly summarize the selected two papers that we believe will make significant contributions. (1) "Generative Aspect Sentiment Quad Prediction with Self-Inference Template" by Li et al., considered that current research predominantly confines templates to single sentences, limiting the model's reasoning opportunities. Therefore, the authors introduce a self-inference template (SIT) to guide the model in thoughtful reasoning. (2) "Interpretability in Sentiment Analysis: A Self-Supervised Approach to Sentiment Cue Extraction" by Sun et al., proposes a new sentiment cue extraction (SCE) self-supervised framework, aimed at improving the interpretability of models. In conclusion, we extend our heartfelt appreciation to all the authors and reviewers who selflessly put their energy to ensure the successful completion of this Special Issue. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9783725818235
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26404075355
Anzahl: 4 verfügbar