The continuous demand for electronic devices operating at increasing current and power levels has driven research into wide-bandgap (WBG) semiconductors in recent decades. In particular, the 4H hexagonal polytype of silicon carbide (4H-SiC) is the most promising for use in power electronic applications in the medium- to high-voltage range. However, to achieve the optimised performance of these 4H-SiC devices, a full understanding of the fundamental material properties, processing technology, and carrier transport mechanisms is required with wide margins for the progress of the related scientific and technological research into this material. On the one hand, an improvement in the existing power device performances in terms of efficiency and reliability is targeted; on the other hand, the 4H-SiC applications are desirably extendable toward new cutting-edge technologies, e.g., quantum technologies. This Special Issue collated 11 regular and 1 review papers. These papers can be summarized into three parts: the investigation of conventional 4H-SiC devices, the suggestion of new approaches for improved devices, and the use of SiC devices in emerging technology fields. Clearly, due to the broadness of 4H-SiC technology, the present collection cannot include all prominent issues. However, we are confident that fundamental properties and novel approaches have been discussed, hoping that this Special Issue will provide interesting inputs for 4H-SiC-based technology advancement.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,71 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783725822386_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The continuous demand for electronic devices operating at increasing current and power levels has driven research into wide-bandgap (WBG) semiconductors in recent decades. In particular, the 4H hexagonal polytype of silicon carbide (4H-SiC) is the most promising for use in power electronic applications in the medium- to high-voltage range. However, to achieve the optimised performance of these 4H-SiC devices, a full understanding of the fundamental material properties, processing technology, and carrier transport mechanisms is required with wide margins for the progress of the related scientific and technological research into this material. On the one hand, an improvement in the existing power device performances in terms of efficiency and reliability is targeted; on the other hand, the 4H-SiC applications are desirably extendable toward new cutting-edge technologies, e.g., quantum technologies. This Special Issue collated 11 regular and 1 review papers. These papers can be summarized into three parts: the investigation of conventional 4H-SiC devices, the suggestion of new approaches for improved devices, and the use of SiC devices in emerging technology fields. Clearly, due to the broadness of 4H-SiC technology, the present collection cannot include all prominent issues. However, we are confident that fundamental properties and novel approaches have been discussed, hoping that this Special Issue will provide interesting inputs for 4H-SiC-based technology advancement. Bestandsnummer des Verkäufers 9783725822386
Anzahl: 2 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783725822386
Anzahl: Mehr als 20 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Hardcover. Zustand: new. Hardcover. The continuous demand for electronic devices operating at increasing current and power levels has driven research into wide-bandgap (WBG) semiconductors in recent decades. In particular, the 4H hexagonal polytype of silicon carbide (4H-SiC) is the most promising for use in power electronic applications in the medium- to high-voltage range. However, to achieve the optimised performance of these 4H-SiC devices, a full understanding of the fundamental material properties, processing technology, and carrier transport mechanisms is required with wide margins for the progress of the related scientific and technological research into this material. On the one hand, an improvement in the existing power device performances in terms of efficiency and reliability is targeted; on the other hand, the 4H-SiC applications are desirably extendable toward new cutting-edge technologies, e.g., quantum technologies. This Special Issue collated 11 regular and 1 review papers. These papers can be summarized into three parts: the investigation of conventional 4H-SiC devices, the suggestion of new approaches for improved devices, and the use of SiC devices in emerging technology fields. Clearly, due to the broadness of 4H-SiC technology, the present collection cannot include all prominent issues. However, we are confident that fundamental properties and novel approaches have been discussed, hoping that this Special Issue will provide interesting inputs for 4H-SiC-based technology advancement. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9783725822386
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26403939469
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18403939463
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 409214802
Anzahl: 4 verfügbar
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. The continuous demand for electronic devices operating at increasing current and power levels has driven research into wide-bandgap (WBG) semiconductors in recent decades. In particular, the 4H hexagonal polytype of silicon carbide (4H-SiC) is the most promising for use in power electronic applications in the medium- to high-voltage range. However, to achieve the optimised performance of these 4H-SiC devices, a full understanding of the fundamental material properties, processing technology, and carrier transport mechanisms is required with wide margins for the progress of the related scientific and technological research into this material. On the one hand, an improvement in the existing power device performances in terms of efficiency and reliability is targeted; on the other hand, the 4H-SiC applications are desirably extendable toward new cutting-edge technologies, e.g., quantum technologies. This Special Issue collated 11 regular and 1 review papers. These papers can be summarized into three parts: the investigation of conventional 4H-SiC devices, the suggestion of new approaches for improved devices, and the use of SiC devices in emerging technology fields. Clearly, due to the broadness of 4H-SiC technology, the present collection cannot include all prominent issues. However, we are confident that fundamental properties and novel approaches have been discussed, hoping that this Special Issue will provide interesting inputs for 4H-SiC-based technology advancement. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9783725822386
Anzahl: 1 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Hardcover. Zustand: new. Hardcover. The continuous demand for electronic devices operating at increasing current and power levels has driven research into wide-bandgap (WBG) semiconductors in recent decades. In particular, the 4H hexagonal polytype of silicon carbide (4H-SiC) is the most promising for use in power electronic applications in the medium- to high-voltage range. However, to achieve the optimised performance of these 4H-SiC devices, a full understanding of the fundamental material properties, processing technology, and carrier transport mechanisms is required with wide margins for the progress of the related scientific and technological research into this material. On the one hand, an improvement in the existing power device performances in terms of efficiency and reliability is targeted; on the other hand, the 4H-SiC applications are desirably extendable toward new cutting-edge technologies, e.g., quantum technologies. This Special Issue collated 11 regular and 1 review papers. These papers can be summarized into three parts: the investigation of conventional 4H-SiC devices, the suggestion of new approaches for improved devices, and the use of SiC devices in emerging technology fields. Clearly, due to the broadness of 4H-SiC technology, the present collection cannot include all prominent issues. However, we are confident that fundamental properties and novel approaches have been discussed, hoping that this Special Issue will provide interesting inputs for 4H-SiC-based technology advancement. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783725822386
Anzahl: 1 verfügbar