Verwandte Artikel zu Hybrid Data Processing by Combining Machine Learning,...

Hybrid Data Processing by Combining Machine Learning, Expert, Safety and Security - Hardcover

 
9783725835454: Hybrid Data Processing by Combining Machine Learning, Expert, Safety and Security

Inhaltsangabe

The goal of this Special Issue is to promote hybrid data processing by combining machine learning with experts' input, data safety, and security. AI technology and machine learning technology are developing rapidly. Data contain important information that can advance human knowledge and enhance AI capabilities. Meanwhile, requirements for data mining and data processing are expanding. Machine learning and deep learning may achieve excellent results, but in some cases, a balance can be reached by involving experienced experts to save resources and improve outcomes. In mining and analyzing data, the issues of data safety, data security, and data privacy also need to be suitably considered. This Special Issue presents ten rigorously reviewed manuscripts that study how to integrate hybrid data intelligence with experts' input, expert systems, safety, and security through decentralized reputation systems, blockchain technology, linkable ring signatures, collaborative filtering, contrastive learning, graph neural networks, feature selection, sample imbalance, few-shot learning, contrastive learning, knowledge graphs, transfer learning, dynamic Gaussian Bayesian networks, the Manning formula, surface confluence, federated learning, trusted execution environments, optimal mechanisms, multi-attribute auctions, multi-scale loss, scenario reconfiguration, probabilistic models, topology reconfiguration models, etc., in scenarios of flood prediction, social recommendation, multi-auction, terrorist attack prediction, etc. We believe that these studies are valuable in this field.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 8,56 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Hybrid Data Processing by Combining Machine Learning,...

Beispielbild für diese ISBN

Verlag: Mdpi AG, 2025
ISBN 10: 3725835454 ISBN 13: 9783725835454
Neu Hardcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783725835454

Verkäufer kontaktieren

Neu kaufen

EUR 59,10
Währung umrechnen
Versand: EUR 8,56
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Zhiming Cai
Verlag: Mdpi AG, 2025
ISBN 10: 3725835454 ISBN 13: 9783725835454
Neu Hardcover

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. The goal of this Special Issue is to promote hybrid data processing by combining machine learning with experts' input, data safety, and security. AI technology and machine learning technology are developing rapidly. Data contain important information that can advance human knowledge and enhance AI capabilities. Meanwhile, requirements for data mining and data processing are expanding. Machine learning and deep learning may achieve excellent results, but in some cases, a balance can be reached by involving experienced experts to save resources and improve outcomes. In mining and analyzing data, the issues of data safety, data security, and data privacy also need to be suitably considered. This Special Issue presents ten rigorously reviewed manuscripts that study how to integrate hybrid data intelligence with experts' input, expert systems, safety, and security through decentralized reputation systems, blockchain technology, linkable ring signatures, collaborative filtering, contrastive learning, graph neural networks, feature selection, sample imbalance, few-shot learning, contrastive learning, knowledge graphs, transfer learning, dynamic Gaussian Bayesian networks, the Manning formula, surface confluence, federated learning, trusted execution environments, optimal mechanisms, multi-attribute auctions, multi-scale loss, scenario reconfiguration, probabilistic models, topology reconfiguration models, etc., in scenarios of flood prediction, social recommendation, multi-auction, terrorist attack prediction, etc. We believe that these studies are valuable in this field. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9783725835454

Verkäufer kontaktieren

Neu kaufen

EUR 65,50
Währung umrechnen
Versand: EUR 28,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Zhiming Cai
Verlag: Mdpi AG, 2025
ISBN 10: 3725835454 ISBN 13: 9783725835454
Neu Hardcover

Anbieter: AussieBookSeller, Truganina, VIC, Australien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. The goal of this Special Issue is to promote hybrid data processing by combining machine learning with experts' input, data safety, and security. AI technology and machine learning technology are developing rapidly. Data contain important information that can advance human knowledge and enhance AI capabilities. Meanwhile, requirements for data mining and data processing are expanding. Machine learning and deep learning may achieve excellent results, but in some cases, a balance can be reached by involving experienced experts to save resources and improve outcomes. In mining and analyzing data, the issues of data safety, data security, and data privacy also need to be suitably considered. This Special Issue presents ten rigorously reviewed manuscripts that study how to integrate hybrid data intelligence with experts' input, expert systems, safety, and security through decentralized reputation systems, blockchain technology, linkable ring signatures, collaborative filtering, contrastive learning, graph neural networks, feature selection, sample imbalance, few-shot learning, contrastive learning, knowledge graphs, transfer learning, dynamic Gaussian Bayesian networks, the Manning formula, surface confluence, federated learning, trusted execution environments, optimal mechanisms, multi-attribute auctions, multi-scale loss, scenario reconfiguration, probabilistic models, topology reconfiguration models, etc., in scenarios of flood prediction, social recommendation, multi-auction, terrorist attack prediction, etc. We believe that these studies are valuable in this field. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Bestandsnummer des Verkäufers 9783725835454

Verkäufer kontaktieren

Neu kaufen

EUR 79,18
Währung umrechnen
Versand: EUR 31,68
Von Australien nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb