Solving problems originating from real-world applications is often based on the solution of a system of linear equations whose coefficient matrix is a large sparse Jacobian matrix. Hence, there is research to exploit the sparsity structure and to decrease the amount of storage. In contrast to full Jacobian computation in which all nonzero elements are to be determined, partial Jacobian computation is looking at a subset of these elements. Partial Jacobian computation can therefore be faster and more efficient than full Jacobian computation. Since Jacobian matrix-vector products are needed in iterative solvers, these types of linear systems can be efficiently solved using automatic differentiation. Determining these nonzero elements in full or partial Jacobian computations by automatic differentiation techniques can be modeled as graph coloring in the language of graph theory. On the other hand, preconditioning techniques are used to improve the convergence of iterative solvers and typically need access to all nonzero elements of the Jacobian matrix. So, a sparsification is applied to the Jacobian matrix before computing the preconditioner. In the second part of this thesis, we introduce a collection of interactive educational modules to teach not only graph coloring, but also other concepts from combinatorial scientific computing in the classroom. These modules are designed to involve the students more thoroughly in the process of learning.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Solving problems originating from real-world applications is often based on the solution of a system of linear equations whose coefficient matrix is a large sparse Jacobian matrix. Hence, there is research to exploit the sparsity structure and to decrease the amount of storage. In contrast to full Jacobian computation in which all nonzero elements are to be determined, partial Jacobian computation is looking at a subset of these elements. Partial Jacobian computation can therefore be faster and more efficient than full Jacobian computation. Since Jacobian matrix-vector products are needed in iterative solvers, these types of linear systems can be efficiently solved using automatic differentiation. Determining these nonzero elements in full or partial Jacobian computations by automatic differentiation techniques can be modeled as graph coloring in the language of graph theory. On the other hand, preconditioning techniques are used to improve the convergence of iterative solvers and typically need access to all nonzero elements of the Jacobian matrix. So, a sparsification is applied to the Jacobian matrix before computing the preconditioner. In the second part of this thesis, we introduce a collection of interactive educational modules to teach not only graph coloring, but also other concepts from combinatorial scientific computing in the classroom. These modules are designed to involve the students more thoroughly in the process of learning. 104 pp. Deutsch. Bestandsnummer des Verkäufers 9783736996366
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. KlappentextrnrnSolving problems originating from real-world applications is often based on the solution of a system of linear equations whose coefficient matrix is a large sparse Jacobian matrix. Hence, there is research to exploit the sparsity . Bestandsnummer des Verkäufers 193776928
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Solving problems originating from real-world applications is often based on the solution of a system of linear equations whose coefficient matrix is a large sparse Jacobian matrix. Hence, there is research to exploit the sparsity structure and to decrease the amount of storage. In contrast to full Jacobian computation in which all nonzero elements are to be determined, partial Jacobian computation is looking at a subset of these elements. Partial Jacobian computation can therefore be faster and more efficient than full Jacobian computation. Since Jacobian matrix-vector products are needed in iterative solvers, these types of linear systems can be efficiently solved using automatic differentiation. Determining these nonzero elements in full or partial Jacobian computations by automatic differentiation techniques can be modeled as graph coloring in the language of graph theory. On the other hand, preconditioning techniques are used to improve the convergence of iterative solvers and typically need access to all nonzero elements of the Jacobian matrix. So, a sparsification is applied to the Jacobian matrix before computing the preconditioner. In the second part of this thesis, we introduce a collection of interactive educational modules to teach not only graph coloring, but also other concepts from combinatorial scientific computing in the classroom. These modules are designed to involve the students more thoroughly in the process of learning.Books on Demand GmbH, Überseering 33, 22297 Hamburg 104 pp. Deutsch. Bestandsnummer des Verkäufers 9783736996366
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Solving problems originating from real-world applications is often based on the solution of a system of linear equations whose coefficient matrix is a large sparse Jacobian matrix. Hence, there is research to exploit the sparsity structure and to decrease the amount of storage. In contrast to full Jacobian computation in which all nonzero elements are to be determined, partial Jacobian computation is looking at a subset of these elements. Partial Jacobian computation can therefore be faster and more efficient than full Jacobian computation. Since Jacobian matrix-vector products are needed in iterative solvers, these types of linear systems can be efficiently solved using automatic differentiation. Determining these nonzero elements in full or partial Jacobian computations by automatic differentiation techniques can be modeled as graph coloring in the language of graph theory. On the other hand, preconditioning techniques are used to improve the convergence of iterative solvers and typically need access to all nonzero elements of the Jacobian matrix. So, a sparsification is applied to the Jacobian matrix before computing the preconditioner. In the second part of this thesis, we introduce a collection of interactive educational modules to teach not only graph coloring, but also other concepts from combinatorial scientific computing in the classroom. These modules are designed to involve the students more thoroughly in the process of learning. Bestandsnummer des Verkäufers 9783736996366
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Combining partial Jacobian computation and preconditioning: New heuristics, educational modules, and applications | Mohammad Ali Rostami | Taschenbuch | 104 S. | Deutsch | 2017 | Cuvillier | EAN 9783736996366 | Verantwortliche Person für die EU: Cuvillier Verlag, Nonnenstieg 8, 37075 Göttingen, info[at]cuvillier[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 110622778
Anzahl: 5 verfügbar