Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht.
Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz.
Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.
Aus dem Inhalt:Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Andrew W. Trask ist Doktorand an der Oxford University und als Research Scientist für DeepMind tätig. Zuvor war er Researcher und Analytics Product Manager bei Digital Reasoning, wo er das größte künstliche Neuronale Netz der Welt trainierte und für die Analytics Roadmap der Synthesys Cognitive Computing Platform verantwortlich war.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: medimops, Berlin, Deutschland
Zustand: acceptable. Ausreichend/Acceptable: Exemplar mit vollständigem Text und sämtlichen Abbildungen oder Karten. Schmutztitel oder Vorsatz können fehlen. Einband bzw. Schutzumschlag weisen unter Umständen starke Gebrauchsspuren auf. / Describes a book or dust jacket that has the complete text pages (including those with maps or plates) but may lack endpapers, half-title, etc. (which must be noted). Binding, dust jacket (if any), etc may also be worn. Bestandsnummer des Verkäufers M03747500153-B
Anzahl: 1 verfügbar
Anbieter: medimops, Berlin, Deutschland
Zustand: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Bestandsnummer des Verkäufers M03747500153-G
Anzahl: 1 verfügbar
Anbieter: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen 354 pp. Deutsch. Bestandsnummer des Verkäufers 9783747500156
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Neuronale Netze und Deep Learning kapieren | Der einfache Praxiseinstieg mit Beispielen in Python | Andrew W. Trask | Taschenbuch | mitp Professional | 360 S. | Deutsch | 2019 | MITP Verlags GmbH | EAN 9783747500156 | Verantwortliche Person für die EU: mitp Verlags GmbH & Co. KG, Steffen Dralle, Augustinusstr. 9a, 50226 Frechen, steffen[dot]dralle[at]mitp[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 117242618
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen. Bestandsnummer des Verkäufers 9783747500156
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen 354 pp. Deutsch. Bestandsnummer des Verkäufers 9783747500156
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Von den Grundlagen Neuronaler Netze ueber Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning o. Bestandsnummer des Verkäufers 310213776
Anzahl: 3 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Aus dem Inhalt:MITP Verlags GmbH, Augustinusstraße 9a, 50226 Frechen 354 pp. Deutsch. Bestandsnummer des Verkäufers 9783747500156
Anzahl: 2 verfügbar
Anbieter: Wegmann1855, Zwiesel, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Aus dem Inhalt: Bestandsnummer des Verkäufers 9783747500156
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 401922189
Anzahl: 1 verfügbar