As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) " . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field". This message can be found in the 12-th problem "Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality" standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) " . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field". This message can be found in the 12-th problem "Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality" standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.
The famous twelfth Hilbert problem calls for holomorphic functions in several variables with properties analogous to the exponential function and the elliptic modular function with a view to the explicit construction of (Hilbert) class fields by means of special values. The lecture notes present those functions living on the two-dimensional complex unit ball. In the course of their construction, the reader is introduced to work with complex multiplication, moduli fields, moduli space of curves, surface uniformizations, Gauss-Manin connection, Jacobian varieties, Torelli's theorem, Picard modular forms, Theta functions, class fields and transcen- dental values in an effective manner.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. VI-160 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16794 9783764328351 Sprache: Englisch Gewicht in Gramm: 550. Bestandsnummer des Verkäufers 2480145
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
kartoniert. Zustand: Sehr gut. Zust: Gutes Exemplar. 160 Seiten, mit Abbildungen, Englisch 322g. Bestandsnummer des Verkäufers 494382
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 172 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 408379/202
Anzahl: 2 verfügbar
Anbieter: Antiquariat Smock, Freiburg, Deutschland
Zustand: Gut. Formateinband: Broschierte Ausgabe VI, 160 S. (24 cm) 1. Aufl.; Gut und sauber erhalten. Sprache: Englisch Gewicht in Gramm: 450 [Stichwörter: David Hilbert, Algebraic Geometry, ; Global analysis; Number theory]. Bestandsnummer des Verkäufers 60008
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but . Bestandsnummer des Verkäufers 5279004
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 172 pp. Englisch. Bestandsnummer des Verkäufers 9783764328351
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21. Bestandsnummer des Verkäufers 9783764328351
Anzahl: 1 verfügbar
Anbieter: Second Story Books, ABAA, Rockville, MD, USA
Softcover. Octavo; G-; Ex-library; Paperback; Spine, green with black print; Cover has light edgewear, call number label on front, remains of label on spine, else light shelfwear; Text block has library stamp on top edge, front flyleaf has library labels, penciled call number on copyright page, endpapers gutters taped, else clean and tight; vi, 160 pages. 1361713. FP New Rockville Stock. Bestandsnummer des Verkäufers 1361713
Anzahl: 1 verfügbar
Anbieter: Fireside Bookshop, Stroud, GLOS, Vereinigtes Königreich
Paperback. Zustand: Very Good. Type: Book N.B. Small gold label to ffep. Corners a little rubbed. Bestandsnummer des Verkäufers 051363
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783764328351_new
Anzahl: Mehr als 20 verfügbar