I Equations of Scalar Type.- 1 Resolvents.- 1.1 Well-posedness and Resolvents.- 1.2 Inhomogeneous Equations.- 1.3 Necessary Conditions for Well-posedness.- 1.4 Perturbed Equations.- 1.5 The Generation Theorem.- 1.6 Integral Resolvents.- 1.7 Comments.- 2 Analytic Resolvents.- 2.1 Definition and First Properties.- 2.2 Generation of Analytic Resolvents.- 2.3 Examples.- 2.4 Spatial Regularity.- 2.5 Perturbed Equations.- 2.6 Maximal Regularity.- 2.7 Comments.- 3 Parabolic Equations.- 3.1 Parabolicity.- 3.2 Regular Kernels.- 3.3 Resolvents for Parabolic Equations.- 3.4 Perturbations.- 3.5 Maximal Regularity.- 3.6 A Representation Formula.- 3.7 Comments.- Appendix: k-monotone Kernels.- 4 Subordination.- 4.1 Bernstein Functions.- 4.2 Completely Positive Kernels.- 4.3 The Subordination Principle.- 4.4 Equations with Completely Positive Kernels.- 4.5 Propagation Functions.- 4.6 Structure of Subordinated Resolvents.- 4.7 Comments.- Appendix: Some Common Bernstein Functions.- 5 Linear Viscoelasticity.- 5.1 Balance of Momentum and Constitutive Laws.- 5.2 Material Functions.- 5.3 Energy Balance and Thermoviscoelasticity.- 5.4 Some One-dimensional Problems.- 5.5 Heat Conduction in Materials with Memory.- 5.6 Synchronous and Incompressible Materials.- 5.7 A Simple Control Problem.- 5.8 Comments.- II Nonscalar Equations.- 6 Hyperbolic Equations of Nonscalar Type.- 6.1 Resolvents of Nonscalar Equations.- 6.2 Well-posedness and Variation of Parameters Formulae.- 6.3 Hyperbolic Perturbation Results.- 6.4 The Generation Theorem.- 6.5 Convergence of Resolvents.- 6.6 Kernels of Positive Type in Hilbert spaces.- 6.7 Hyperbolic Problems of Variational Type.- 6.8 Comments.- 7 Nonscalar Parabolic Equations.- 7.1 Analytic Resolvents.- 7.2 Parabolic Equations.- 7.3 Parabolic Problems of Variational Type.- 7.4 Maximal Regularity of Perturbed Parabolic Problems.- 7.5 Resolvents for Perturbed Parabolic Problems.- 7.6 Uniform Bounds for the Resolvent.- 7.7 Comments.- 8 Parabolic Problems in Lp-Spaces.- 8.1 Operators with Bounded Imaginary Powers.- 8.2 Vector-Valued Multiplier Theorems.- 8.3 Sums of Commuting Linear Operators.- 8.4 Volterra Operators in Lp.- 8.5 Maximal Regularity in Lp.- 8.6 Strong Lp-Stability on the Halfline.- 8.7 Comments.- 9 Viscoelasticity and Electrodynamics with Memory.- 9.1 Viscoelastic Beams.- 9.2 Viscoelastic Plates.- 9.3 Thermoviscoelasticity: Strong Approach.- 9.4 Thermoviscoelasticity: Variational Approach.- 9.5 Electrodynamics with Memory.- 9.6 A Transmission Problem for Media with Memory.- 9.7 Comments.- III Equations on the Line.- 10 Integrability of Resolvents.- 10.1 Stability on the Halfline.- 10.2 Parabolic Equations of Scalar Type.- 10.3 Subordinated Resolvents.- 10.4 Strong Integrability in Hilbert Spaces.- 10.5 Nonscalar Parabolic Problems.- 10.6 Comments.- 11 Limiting Equations.- 11.1 Homogeneous Spaces.- 11.2 Admissibility.- 11.3 A-Kernels for Compact A.- 11.4 Almost Periodic Solutions.- 11.5 Nonresonant Problems.- 11.6 Asymptotic Equivalence.- 11.7 Comments.- 12 Admissibility of Function Spaces.- 12.1 Perturbations: Hyperbolic Case.- 12.2 Subordinated Equations.- 12.3 Admissibility in Hilbert Spaces.- 12.4 A-kernels for Parabolic Problems.- 12.5 Maximal Regularity on the Line.- 12.6 Perturbations: Parabolic Case.- 12.7 Comments.- 13 Further Applications and Complements.- 13.1 Viscoelastic Timoshenko Beams.- 13.2 Heat Conduction in Materials with Memory.- 13.3 Electrodynamics with Memory.- 13.4 Ergodic Theory.- 13.5 Semilinear Equations.- 13.6 Semigroup Approaches.- 13.7 Nonlinear Equations with Accretive Operators.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book deals with evolutionary systems whose equation of state can be formulated as a linear Volterra equation in a Banach space. The main feature of the kernels involved is that they consist of unbounded linear operators. The aim is a coherent presentation of the state of art of the theory including detailed proofs and its applications to problems from mathematical physics, such as viscoelasticity, heat conduction, and electrodynamics with memory. The importance of evolutionary integral equations - which form a larger class than do evolution equations - stems from such applications and therefore special emphasis is placed on these. A number of models are derived and, by means of the developed theory, discussed thoroughly. An annotated bibliography containing 450 entries increases the book's value as an incisive reference text.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 5,91 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783764328764_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. This book deals with evolutionary systems whose equation of state can be formulated as a linear Volterra equation in a Banach space. The main feature of the kernels involved is that they consist of unbounded linear operators. The aim is a coherent presentat. Bestandsnummer des Verkäufers 908772398
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book deals with evolutionary systems whose equation of state can be formulated as a linear Volterra equation in a Banach space. The main feature of the kernels involved is that they consist of unbounded linear operators. The aim is a coherent presentation of the state of art of the theory including detailed proofs and its applications to problems from mathematical physics, such as viscoelasticity, heat conduction, and electrodynamics with memory. The importance of evolutionary integral equations - which form a larger class than do evolution equations - stems from such applications and therefore special emphasis is placed on these. A number of models are derived and, by means of the developed theory, discussed thoroughly. An annotated bibliography containing 450 entries increases the book's value as an incisive reference text. Bestandsnummer des Verkäufers 9783764328764
Anzahl: 2 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Aus der Auflösung einer renommierten Bibliothek. Kann Stempel beinhalten. | Seiten: 400 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 689470/202
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book deals with evolutionary systems whose equation of state can be formulated as a linear Volterra equation in a Banach space. The main feature of the kernels involved is that they consist of unbounded linear operators. The aim is a coherent presentation of the state of art of the theory including detailed proofs and its applications to problems from mathematical physics, such as viscoelasticity, heat conduction, and electrodynamics with memory. The importance of evolutionary integral equations - which form a larger class than do evolution equations - stems from such applications and therefore special emphasis is placed on these. A number of models are derived and, by means of the developed theory, discussed thoroughly. An annotated bibliography containing 450 entries increases the book's value as an incisive reference text. Englisch. Bestandsnummer des Verkäufers 9783764328764
Anzahl: 2 verfügbar