This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping ? ? u ?? u =|u| u in ? ×(0,+?) ? tt ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 1) ? ? u+g(u)=0 on ? ×(0,+?) ? t 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x),x? ? , t n where ? is a bounded domain of R ,n? 1, with a smooth boundary ? = ? ?? . 0 1 Here, ? and ? are closed and disjoint and ? represents the unit outward normal 0 1 to ?. Problems like (1. 1), more precisely, ? u ?? u =?f (u)in? ×(0,+?) ? tt 0 ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 2) ? ? u =?g(u )?f (u)on? ×(0,+?) ? t 1 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x),x? ? , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s? 0, that is, f represents, for i i i each i, an attractive force.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This volume represents a broad survey of current research in the fields of nonlinear analysis and nonlinear differential equations. It is dedicated to Djairo G. de Figueiredo on the occasion of his 70th birthday. The collection of 34 research and survey articles reflects the wide range of interests of Djairo de Figueiredo, including:
- various types of nonlinear partial differential equations and systems, in particular equations of elliptic, parabolic, hyperbolic and mixed type;
- equations of Schrödinger, Maxwell, Navier-Stokes, Bernoulli-Euler, Seiberg-Witten, Caffarelli-Kohn-Nirenberg;
- existence, uniqueness and multiplicity of solutions;
- critical Sobolev growth and connected phenomena;
- qualitative properties, regularity and shape of solutions;
- inequalities, a-priori estimates and asymptotic behavior;
- various applications to models such as asymptotic membranes, nonlinear plates and inhomogeneous fluids.
The contributions of so many distinguished mathematicians to this volume document the importance and lasting influence of the mathematical research of Djairo de Figueiredo. The book thus is a source of new ideas and results and should appeal to graduate students and mathematicians interested in nonlinear problems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 2,30 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
2006. 16 x 24 cm. XII, 520 S. XII, 520 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. (Progress in Nonlinear Differential Equations and Their Applications). Sprache: Englisch. Bestandsnummer des Verkäufers 375ZB
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. xii + 518. Bestandsnummer des Verkäufers 18304578
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. xii + 518. Bestandsnummer des Verkäufers 7543319
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. xii + 518 1st Edition. Bestandsnummer des Verkäufers 26304584
Anzahl: 1 verfügbar
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: Fine. First edition, first printing, 518 pp., Hardcover, previous owner's small hand stamp to front free endpaper else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB1322669
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. State of the art in the fields of nonlinear analysis and nonlinear differential equationsA tribute to the distinguished mathematician D.G. de FigueiredoThis paper is concerned with the existence and uniform decay rates of solutions of the . Bestandsnummer des Verkäufers 449593976
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping u u =|u| u in ×(0,+ ) tt u=0 on ×(0,+ ) 0 (1. 1) u+g(u)=0 on ×(0,+ ) t 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t n where is a bounded domain of R ,n 1, with a smooth boundary = . 0 1 Here, and are closed and disjoint and represents the unit outward normal 0 1 to . Problems like (1. 1), more precisely, u u = f (u)in ×(0,+ ) tt 0 u=0 on ×(0,+ ) 0 (1. 2) u = g(u ) f (u)on ×(0,+ ) t 1 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s 0, that is, f represents, for i i i each i, an attractive force. Bestandsnummer des Verkäufers 9783764371494
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping u u =|u| u in ×(0,+ ) tt u=0 on ×(0,+ ) 0 (1. 1) u+g(u)=0 on ×(0,+ ) t 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t n where is a bounded domain of R ,n 1, with a smooth boundary = . 0 1 Here, and are closed and disjoint and represents the unit outward normal 0 1 to . Problems like (1. 1), more precisely, u u = f (u)in ×(0,+ ) tt 0 u=0 on ×(0,+ ) 0 (1. 2) u = g(u ) f (u)on ×(0,+ ) t 1 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s 0, that is, f represents, for i i i each i, an attractive force.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 532 pp. Englisch. Bestandsnummer des Verkäufers 9783764371494
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping u u =|u| u in ×(0,+ ) tt u=0 on ×(0,+ ) 0 (1. 1) u+g(u)=0 on ×(0,+ ) t 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t n where is a bounded domain of R ,n 1, with a smooth boundary = . 0 1 Here, and are closed and disjoint and represents the unit outward normal 0 1 to . Problems like (1. 1), more precisely, u u = f (u)in ×(0,+ ) tt 0 u=0 on ×(0,+ ) 0 (1. 2) u = g(u ) f (u)on ×(0,+ ) t 1 1 0 1 u(x,0) = u (x); u (x,0) = u (x),x , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s 0, that is, f represents, for i i i each i, an attractive force. 518 pp. Englisch. Bestandsnummer des Verkäufers 9783764371494
Anzahl: 2 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-342996
Anzahl: 1 verfügbar