How to draw plausible conclusions from uncertain and conflicting sources of evidence is one of the major intellectual challenges of Artificial Intelligence. It is a prerequisite of the smart technology needed to help humans cope with the information explosion of the modern world. In addition, computational modelling of uncertain reasoning is a key to understanding human rationality. Previous computational accounts of uncertain reasoning have fallen into two camps: purely symbolic and numeric. This book represents a major advance by presenting a unifying framework which unites these opposing camps. The Incidence Calculus can be viewed as both a symbolic and a numeric mechanism. Numeric values are assigned indirectly to evidence via the possible worlds in which that evidence is true. This facilitates purely symbolic reasoning using the possible worlds and numeric reasoning via the probabilities of those possible worlds. Moreover, the indirect assignment solves some difficult technical problems, like the combinat ion of dependent sources of evidcence, which had defeated earlier mechanisms. Weiru Liu generalises the Incidence Calculus and then compares it to a succes sion of earlier computational mechanisms for uncertain reasoning: Dempster-Shafer Theory, Assumption-Based Truth Maintenance, Probabilis tic Logic, Rough Sets, etc. She shows how each of them is represented and interpreted in Incidence Calculus. The consequence is a unified mechanism which includes both symbolic and numeric mechanisms as special cases. It provides a bridge between symbolic and numeric approaches, retaining the advantages of both and overcoming some of their disadvantages.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The book systematically provides the reader with a broad range of systems/research work to date that address the importance of combining numerical and symbolic approaches to reasoning under uncertainty in complex applications. It covers techniques on how to extend propositional logic to a probabilistic one and compares such derived probabilistic logic with closely related mechanisms, namely evidence theory, assumption based truth maintenance systems and rough sets, in terms of representing and reasoning with knowledge and evidence.
The book is addressed primarily to researchers, practitioners, students and lecturers in the field of Artificial Intelligence, particularly in the areas of reasoning under uncertainty, logic, knowledge representation and reasoning, and non-monotonic reasoning.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,66 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The reader gains relatively complete knowledge about how a pure numerical, pure symbolic, or hybrid system behavesSystemati review of the work on integrating numerical and symbolic approachesIllustration by a large number of examplesHow to d. Bestandsnummer des Verkäufers 5310759
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - How to draw plausible conclusions from uncertain and conflicting sources of evidence is one of the major intellectual challenges of Artificial Intelligence. It is a prerequisite of the smart technology needed to help humans cope with the information explosion of the modern world. In addition, computational modelling of uncertain reasoning is a key to understanding human rationality. Previous computational accounts of uncertain reasoning have fallen into two camps: purely symbolic and numeric. This book represents a major advance by presenting a unifying framework which unites these opposing camps. The Incidence Calculus can be viewed as both a symbolic and a numeric mechanism. Numeric values are assigned indirectly to evidence via the possible worlds in which that evidence is true. This facilitates purely symbolic reasoning using the possible worlds and numeric reasoning via the probabilities of those possible worlds. Moreover, the indirect assignment solves some difficult technical problems, like the combinat ion of dependent sources of evidcence, which had defeated earlier mechanisms. Weiru Liu generalises the Incidence Calculus and then compares it to a succes sion of earlier computational mechanisms for uncertain reasoning: Dempster-Shafer Theory, Assumption-Based Truth Maintenance, Probabilis tic Logic, Rough Sets, etc. She shows how each of them is represented and interpreted in Incidence Calculus. The consequence is a unified mechanism which includes both symbolic and numeric mechanisms as special cases. It provides a bridge between symbolic and numeric approaches, retaining the advantages of both and overcoming some of their disadvantages. Bestandsnummer des Verkäufers 9783790824933
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -How to draw plausible conclusions from uncertain and conflicting sources of evidence is one of the major intellectual challenges of Artificial Intelligence. It is a prerequisite of the smart technology needed to help humans cope with the information explosion of the modern world. In addition, computational modelling of uncertain reasoning is a key to understanding human rationality. Previous computational accounts of uncertain reasoning have fallen into two camps: purely symbolic and numeric. This book represents a major advance by presenting a unifying framework which unites these opposing camps. The Incidence Calculus can be viewed as both a symbolic and a numeric mechanism. Numeric values are assigned indirectly to evidence via the possible worlds in which that evidence is true. This facilitates purely symbolic reasoning using the possible worlds and numeric reasoning via the probabilities of those possible worlds. Moreover, the indirect assignment solves some difficult technical problems, like the combinat ion of dependent sources of evidcence, which had defeated earlier mechanisms. Weiru Liu generalises the Incidence Calculus and then compares it to a succes sion of earlier computational mechanisms for uncertain reasoning: Dempster-Shafer Theory, Assumption-Based Truth Maintenance, Probabilis tic Logic, Rough Sets, etc. She shows how each of them is represented and interpreted in Incidence Calculus. The consequence is a unified mechanism which includes both symbolic and numeric mechanisms as special cases. It provides a bridge between symbolic and numeric approaches, retaining the advantages of both and overcoming some of their disadvantages.Physica Verlag, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch. Bestandsnummer des Verkäufers 9783790824933
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -How to draw plausible conclusions from uncertain and conflicting sources of evidence is one of the major intellectual challenges of Artificial Intelligence. It is a prerequisite of the smart technology needed to help humans cope with the information explosion of the modern world. In addition, computational modelling of uncertain reasoning is a key to understanding human rationality. Previous computational accounts of uncertain reasoning have fallen into two camps: purely symbolic and numeric. This book represents a major advance by presenting a unifying framework which unites these opposing camps. The Incidence Calculus can be viewed as both a symbolic and a numeric mechanism. Numeric values are assigned indirectly to evidence via the possible worlds in which that evidence is true. This facilitates purely symbolic reasoning using the possible worlds and numeric reasoning via the probabilities of those possible worlds. Moreover, the indirect assignment solves some difficult technical problems, like the combinat ion of dependent sources of evidcence, which had defeated earlier mechanisms. Weiru Liu generalises the Incidence Calculus and then compares it to a succes sion of earlier computational mechanisms for uncertain reasoning: Dempster-Shafer Theory, Assumption-Based Truth Maintenance, Probabilis tic Logic, Rough Sets, etc. She shows how each of them is represented and interpreted in Incidence Calculus. The consequence is a unified mechanism which includes both symbolic and numeric mechanisms as special cases. It provides a bridge between symbolic and numeric approaches, retaining the advantages of both and overcoming some of their disadvantages. 292 pp. Englisch. Bestandsnummer des Verkäufers 9783790824933
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783790824933_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783790824933
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 290. Bestandsnummer des Verkäufers 262158306
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 290. Bestandsnummer des Verkäufers 182158312
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 290 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 5722429
Anzahl: 4 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0316110061546
Anzahl: Mehr als 20 verfügbar