This book investigates several research problems which arise in modern Web Information Retrieval. First of all we consider the fact that there are many situations where a flat list of ten search results are not enough, and that the users might desire to have a larger number of results grouped on-the-fly in folders of similar topics. In this book, we describe Snaket, a hierarchical clustering meta-search engine which personalizes searches according to the clusters selected on-the-fly by users. Second, we consider those situations where users might desire to access fresh information such as news articles. We present a new ranking algorithm suitable for ranking those fresh type of information. Third, we will discuss numerical methodologies for accelerating the ranking methodologies used in Web Search. An important achievement for this book is that we show how to address the above predominant issues of Web Information Retrieval by using clustering and ranking methodologies. We demonstrate that both clustering and ranking have a mutual reinforcement property that has not yet been studied intensively.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book investigates several research problems which arise in modern Web Information Retrieval. First of all we consider the fact that there are many situations where a flat list of ten search results are not enough, and that the users might desire to have a larger number of results grouped on-the-fly in folders of similar topics. In this book, we describe Snaket, a hierarchical clustering meta-search engine which personalizes searches according to the clusters selected on-the-fly by users. Second, we consider those situations where users might desire to access fresh information such as news articles. We present a new ranking algorithm suitable for ranking those fresh type of information. Third, we will discuss numerical methodologies for accelerating the ranking methodologies used in Web Search. An important achievement for this book is that we show how to address the above predominant issues of Web Information Retrieval by using clustering and ranking methodologies. We demonstrate that both clustering and ranking have a mutual reinforcement property that has not yet been studied intensively.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0316110073604
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 5501124-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783836456579
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783836456579
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783836456579
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783836456579_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783836456579
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 5501124-n
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 598301061
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - This book investigates several research problems which arise in modern Web Information Retrieval. First of all we consider the fact that there are many situations where a flat list of ten search results are not enough, and that the users might desire to have a larger number of results grouped on-the-fly in folders of similar topics. In this book, we describe Snaket, a hierarchical clustering meta-search engine which personalizes searches according to the clusters selected on-the-fly by users. Second, we consider those situations where users might desire to access fresh information such as news articles. We present a new ranking algorithm suitable for ranking those fresh type of information. Third, we will discuss numerical methodologies for accelerating the ranking methodologies used in Web Search. An important achievement for this book is that we show how to address the above predominant issues of Web Information Retrieval by using clustering and ranking methodologies. We demonstrate that both clustering and ranking have a mutual reinforcement property that has not yet been studied intensively. Bestandsnummer des Verkäufers 9783836456579
Anzahl: 2 verfügbar