While human listeners have little problems in dealing with the strong variation in spoken language, the same cannot be said about automatic speech recognition (ASR). This work compares recognition performance of man and machine with the aim of learning from the distinct errors between these two. Based on the differences, the signal processing mechanisms are analyzed that are suitable to increase the robustness of ASR. The comparison focuses on the influence of intrinsic variation of speech, i.e., changes in speaking rate, effort and style, as well as dialect and accent. The outcome of the experiments suggests that the processing of temporal cues in ASR bears room for improvement. Therefore, spectro-temporal features are employed as input to ASR systems, which results in an increase of recognition performance for varying speaking effort and speaking style compared to standard features. This documents the usefulness of spectro-temporal and temporal information for automatic recognizers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
While human listeners have little problems in dealing with the strong variation in spoken language, the same cannot be said about automatic speech recognition (ASR). This work compares recognition performance of man and machine with the aim of learning from the distinct errors between these two. Based on the differences, the signal processing mechanisms are analyzed that are suitable to increase the robustness of ASR. The comparison focuses on the influence of intrinsic variation of speech, i.e., changes in speaking rate, effort and style, as well as dialect and accent. The outcome of the experiments suggests that the processing of temporal cues in ASR bears room for improvement. Therefore, spectro-temporal features are employed as input to ASR systems, which results in an increase of recognition performance for varying speaking effort and speaking style compared to standard features. This documents the usefulness of spectro-temporal and temporal information for automatic recognizers.
Bernd T. Meyer studied physics at the University in Oldenburg, and received his diploma and Ph.D. in 2004 and 2009, respectively. He has been working on the improvement of automatic speech recognizers and modeling human speech perception both in Oldenburg and the International Computer Science Institute in Berkeley, CA.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. While human listeners have little problems in dealing with the strong variation in spoken language, the same cannot be said about automatic speech recognition (ASR). This work compares recognition performance of man and machine with the aim of learning from. Bestandsnummer des Verkäufers 5406503
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783838121550_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783838121550
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - While human listeners have little problems in dealing with the strong variation in spoken language, the same cannot be said about automatic speech recognition (ASR). This work compares recognition performance of man and machine with the aim of learning from the distinct errors between these two. Based on the differences, the signal processing mechanisms are analyzed that are suitable to increase the robustness of ASR. The comparison focuses on the influence of intrinsic variation of speech, i.e., changes in speaking rate, effort and style, as well as dialect and accent. The outcome of the experiments suggests that the processing of temporal cues in ASR bears room for improvement. Therefore, spectro-temporal features are employed as input to ASR systems, which results in an increase of recognition performance for varying speaking effort and speaking style compared to standard features. This documents the usefulness of spectro-temporal and temporal information for automatic recognizers. Bestandsnummer des Verkäufers 9783838121550
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783838121550
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783838121550
Anzahl: 10 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783838121550
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783838121550
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLING22Oct2817100592155
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 140. Bestandsnummer des Verkäufers 26128843777
Anzahl: 4 verfügbar