In an effort to reduce the energy consumption of high performance computing centers, one approach is to switch hardware to lower power states in promising parallel application phases. But statically switching the power saving mechanisms increases the application runtime. As a consequence, no energy can be saved. Contrary to static switching strategies, dynamic switching strategies consider the hardware usage in the application phases to switch between the different modes without increasing the application runtime. This book designs and evaluates tool extensions for power consumption measurement in parallel systems with the final goal to characterize and identify energy-efficiency hot spots in scientific applications. Using an energy-efficiency benchmark for parallel systems, typical hardware usage pattern are identified to characterize the workload, the impact on the node power consumption and finally the potential for energy saving. The significant power and energy-saving potential led to the design of a software interface for the efficient management of the power saving modes per compute node to be exploited by application programmers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Timo Minartz received his PhD in June 2013 from the University of Hamburg. His major research interests are high-performance computing and energy efficiency. He received his MSc degree at the University of Heidelberg in 2009 where he started to work in the field of High Performance Computing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In an effort to reduce the energy consumption of high performance computing centers, one approach is to switch hardware to lower power states in promising parallel application phases. But statically switching the power saving mechanisms increases the application runtime. As a consequence, no energy can be saved. Contrary to static switching strategies, dynamic switching strategies consider the hardware usage in the application phases to switch between the different modes without increasing the application runtime. This book designs and evaluates tool extensions for power consumption measurement in parallel systems with the final goal to characterize and identify energy-efficiency hot spots in scientific applications. Using an energy-efficiency benchmark for parallel systems, typical hardware usage pattern are identified to characterize the workload, the impact on the node power consumption and finally the potential for energy saving. The significant power and energy-saving potential led to the design of a software interface for the efficient management of the power saving modes per compute node to be exploited by application programmers. 196 pp. Englisch. Bestandsnummer des Verkäufers 9783838137940
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Minartz TimoTimo Minartz received his PhD in June 2013 from the University of Hamburg. His major research interests are high-performance computing and energy efficiency. He received his MSc degree at the University of Heidelberg in 2. Bestandsnummer des Verkäufers 5408023
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In an effort to reduce the energy consumption of high performance computing centers, one approach is to switch hardware to lower power states in promising parallel application phases. But statically switching the power saving mechanisms increases the application runtime. As a consequence, no energy can be saved. Contrary to static switching strategies, dynamic switching strategies consider the hardware usage in the application phases to switch between the different modes without increasing the application runtime. This book designs and evaluates tool extensions for power consumption measurement in parallel systems with the final goal to characterize and identify energy-efficiency hot spots in scientific applications. Using an energy-efficiency benchmark for parallel systems, typical hardware usage pattern are identified to characterize the workload, the impact on the node power consumption and finally the potential for energy saving. The significant power and energy-saving potential led to the design of a software interface for the efficient management of the power saving modes per compute node to be exploited by application programmers.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 196 pp. Englisch. Bestandsnummer des Verkäufers 9783838137940
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Power Consumption Measurement in Parallel Systems | Timo Minartz | Taschenbuch | 196 S. | Englisch | 2014 | Südwestdeutscher Verlag für Hochschulschriften | EAN 9783838137940 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 105372205
Anzahl: 5 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In an effort to reduce the energy consumption of high performance computing centers, one approach is to switch hardware to lower power states in promising parallel application phases. But statically switching the power saving mechanisms increases the application runtime. As a consequence, no energy can be saved. Contrary to static switching strategies, dynamic switching strategies consider the hardware usage in the application phases to switch between the different modes without increasing the application runtime. This book designs and evaluates tool extensions for power consumption measurement in parallel systems with the final goal to characterize and identify energy-efficiency hot spots in scientific applications. Using an energy-efficiency benchmark for parallel systems, typical hardware usage pattern are identified to characterize the workload, the impact on the node power consumption and finally the potential for energy saving. The significant power and energy-saving potential led to the design of a software interface for the efficient management of the power saving modes per compute node to be exploited by application programmers. Bestandsnummer des Verkäufers 9783838137940
Anzahl: 1 verfügbar