Fluid-structure interaction physical processes are very complex, non linear in nature and can not be solved analytically. In fact experimental setups are essential to provide reliable data. However, these are generally associated with enormous costs, which is why the demand for numerical simulations as development tool is increasing rapidly. In this study, an Arbitrary Lagrangian-Eulerian (ALE) formulation is employed in a fully coupled monolithic way, considering the problem as one continuum. The mathematical description and the numerical schemes are designed in such a way that more complicated constitutive relations (and more realistic for biomechanics applications) for the fluid as well as the structural part can be easily incorporated. The aim is to study the interaction of the elastic walls of the aneurysm with the geometrical shape of the implanted stent structure. This study can be seen as a basic step towards the understanding of the resulting complex flow phenomena so that in future aneurysm rupture shall be suppressed by an optimal setting for the implanted stent geometry. The optimization of fluid structure interaction problems are also investigated to set the benchmark.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
He has received his doctorate degree from TU Dortmund in 2011. He is scholarship holder of DAAD for PhD studies. He was part of the projects funded by BMBF. He is working as a senior scientific researcher with additional teaching duties since 2011 at the Faculty of Mathematics Chair III of Applied Mathematics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Fluid-structure interaction physical processes are very complex, non linear in nature and can not be solved analytically. In fact experimental setups are essential to provide reliable data. However, these are generally associated with enormous costs, which is why the demand for numerical simulations as development tool is increasing rapidly. In this study, an Arbitrary Lagrangian-Eulerian (ALE) formulation is employed in a fully coupled monolithic way, considering the problem as one continuum. The mathematical description and the numerical schemes are designed in such a way that more complicated constitutive relations (and more realistic for biomechanics applications) for the fluid as well as the structural part can be easily incorporated. The aim is to study the interaction of the elastic walls of the aneurysm with the geometrical shape of the implanted stent structure. This study can be seen as a basic step towards the understanding of the resulting complex flow phenomena so that in future aneurysm rupture shall be suppressed by an optimal setting for the implanted stent geometry. The optimization of fluid structure interaction problems are also investigated to set the benchmark. 152 pp. Englisch. Bestandsnummer des Verkäufers 9783838152301
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Razzaq MudassarHe has received his doctorate degree from TU Dortmund in 2011. He is scholarship holder of DAAD for PhD studies. He was part of the projects funded by BMBF. He is working as a senior scientific researcher with addition. Bestandsnummer des Verkäufers 151606169
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Fluid-structure interaction physical processes are very complex, non linear in nature and can not be solved analytically. In fact experimental setups are essential to provide reliable data. However, these are generally associated with enormous costs, which is why the demand for numerical simulations as development tool is increasing rapidly. In this study, an Arbitrary Lagrangian-Eulerian (ALE) formulation is employed in a fully coupled monolithic way, considering the problem as one continuum. The mathematical description and the numerical schemes are designed in such a way that more complicated constitutive relations (and more realistic for biomechanics applications) for the fluid as well as the structural part can be easily incorporated. The aim is to study the interaction of the elastic walls of the aneurysm with the geometrical shape of the implanted stent structure. This study can be seen as a basic step towards the understanding of the resulting complex flow phenomena so that in future aneurysm rupture shall be suppressed by an optimal setting for the implanted stent geometry. The optimization of fluid structure interaction problems are also investigated to set the benchmark.Books on Demand GmbH, Überseering 33, 22297 Hamburg 152 pp. Englisch. Bestandsnummer des Verkäufers 9783838152301
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Fluid-structure interaction physical processes are very complex, non linear in nature and can not be solved analytically. In fact experimental setups are essential to provide reliable data. However, these are generally associated with enormous costs, which is why the demand for numerical simulations as development tool is increasing rapidly. In this study, an Arbitrary Lagrangian-Eulerian (ALE) formulation is employed in a fully coupled monolithic way, considering the problem as one continuum. The mathematical description and the numerical schemes are designed in such a way that more complicated constitutive relations (and more realistic for biomechanics applications) for the fluid as well as the structural part can be easily incorporated. The aim is to study the interaction of the elastic walls of the aneurysm with the geometrical shape of the implanted stent structure. This study can be seen as a basic step towards the understanding of the resulting complex flow phenomena so that in future aneurysm rupture shall be suppressed by an optimal setting for the implanted stent geometry. The optimization of fluid structure interaction problems are also investigated to set the benchmark. Bestandsnummer des Verkäufers 9783838152301
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Finite element simulation techniques for fluid structure interaction | Applications to bio-engineering and optimization | Mudassar Razzaq | Taschenbuch | 152 S. | Englisch | 2016 | Südwestdeutscher Verlag für Hochschulschriften | EAN 9783838152301 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 103785994
Anzahl: 5 verfügbar