This dissertation contains three topics using the Bayesian paradigm for statistical inference. The first topic is related to Bayesian sample size determination with a misclassified prevalence variable when two possibly dependent diagnostic tests are used for estimation. After accounting for the dependence structure, the required sample size will be larger than that assuming independence between the tests. The second topic is also concerned with Bayesian sample size calculation with a misclassified binary response variable. Differing from the first topic, an error-free covariate is added. Simulations demonstrate that choices of prior distributions have a great impact on the resultant sample size. The last topic is about Bayesian variable selection under the multiple linear regression model. Two competing Bayesian methods are Bayesian model averaging and reversible jump MCMC. It is found that reversible jump MCMC, expected to give better models, does not seem to differ from Bayesian model averaging in examples considered.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This dissertation contains three topics using the Bayesian paradigm for statistical inference. The first topic is related to Bayesian sample size determination with a misclassified prevalence variable when two possibly dependent diagnostic tests are used for estimation. After accounting for the dependence structure, the required sample size will be larger than that assuming independence between the tests. The second topic is also concerned with Bayesian sample size calculation with a misclassified binary response variable. Differing from the first topic, an error-free covariate is added. Simulations demonstrate that choices of prior distributions have a great impact on the resultant sample size. The last topic is about Bayesian variable selection under the multiple linear regression model. Two competing Bayesian methods are Bayesian model averaging and reversible jump MCMC. It is found that reversible jump MCMC, expected to give better models, does not seem to differ from Bayesian model averaging in examples considered.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 23,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This dissertation contains three topics using the Bayesian paradigm for statistical inference. The first topic is related to Bayesian sample size determination with a misclassified prevalence variable when two possibly dependent diagnostic tests are used for estimation. After accounting for the dependence structure, the required sample size will be larger than that assuming independence between the tests. The second topic is also concerned with Bayesian sample size calculation with a misclassified binary response variable. Differing from the first topic, an error-free covariate is added. Simulations demonstrate that choices of prior distributions have a great impact on the resultant sample size. The last topic is about Bayesian variable selection under the multiple linear regression model. Two competing Bayesian methods are Bayesian model averaging and reversible jump MCMC. It is found that reversible jump MCMC, expected to give better models, does not seem to differ from Bayesian model averaging in examples considered. 100 pp. Englisch. Bestandsnummer des Verkäufers 9783838317731
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This dissertation contains three topics using the Bayesian paradigm for statistical inference. The first topic is related to Bayesian sample size determination with a misclassified prevalence variable when two possibly dependent diagnostic tests are used fo. Bestandsnummer des Verkäufers 5412450
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This dissertation contains three topics using the Bayesian paradigm for statistical inference. The first topic is related to Bayesian sample size determination with a misclassified prevalence variable when two possibly dependent diagnostic tests are used for estimation. After accounting for the dependence structure, the required sample size will be larger than that assuming independence between the tests. The second topic is also concerned with Bayesian sample size calculation with a misclassified binary response variable. Differing from the first topic, an error-free covariate is added. Simulations demonstrate that choices of prior distributions have a great impact on the resultant sample size. The last topic is about Bayesian variable selection under the multiple linear regression model. Two competing Bayesian methods are Bayesian model averaging and reversible jump MCMC. It is found that reversible jump MCMC, expected to give better models, does not seem to differ from Bayesian model averaging in examples considered.Books on Demand GmbH, Überseering 33, 22297 Hamburg 100 pp. Englisch. Bestandsnummer des Verkäufers 9783838317731
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This dissertation contains three topics using the Bayesian paradigm for statistical inference. The first topic is related to Bayesian sample size determination with a misclassified prevalence variable when two possibly dependent diagnostic tests are used for estimation. After accounting for the dependence structure, the required sample size will be larger than that assuming independence between the tests. The second topic is also concerned with Bayesian sample size calculation with a misclassified binary response variable. Differing from the first topic, an error-free covariate is added. Simulations demonstrate that choices of prior distributions have a great impact on the resultant sample size. The last topic is about Bayesian variable selection under the multiple linear regression model. Two competing Bayesian methods are Bayesian model averaging and reversible jump MCMC. It is found that reversible jump MCMC, expected to give better models, does not seem to differ from Bayesian model averaging in examples considered. Bestandsnummer des Verkäufers 9783838317731
Anzahl: 1 verfügbar