This publication investigates the applicability of the simultaneous stabilization theory to design of linear controllers based on two quasilinear models of a highly nonlinear plant. For a robotic problem, it is found that a linear controller, that stabilizes the two linear approximations of the quasilinear models and achieves certain performance measures for both linear plants, may indeed stabilize and force the actual nonlinear feedback system to satisfy a set of performance measures. However, there may be cases that this would not be true. The design procedure involves direct simulation and evaluation of Fourier integrals to arrive at the describing function models of the plant. There are no restrictions on nonlinearity type (i.e., could be continuous or discontinuous), nonlinearity arrangement (i.e., could be in forward path, feedback path, and could be implicit or explicit), and system order. Two linear approximations to the two of the obtained quasilinear models are identified. This is followed by application of the Simplex optimization procedure to arrive at the desired controller.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This publication investigates the applicability of the simultaneous stabilization theory to design of linear controllers based on two quasilinear models of a highly nonlinear plant. For a robotic problem, it is found that a linear controller, that stabilizes the two linear approximations of the quasilinear models and achieves certain performance measures for both linear plants, may indeed stabilize and force the actual nonlinear feedback system to satisfy a set of performance measures. However, there may be cases that this would not be true. The design procedure involves direct simulation and evaluation of Fourier integrals to arrive at the describing function models of the plant. There are no restrictions on nonlinearity type (i.e., could be continuous or discontinuous), nonlinearity arrangement (i.e., could be in forward path, feedback path, and could be implicit or explicit), and system order. Two linear approximations to the two of the obtained quasilinear models are identified. This is followed by application of the Simplex optimization procedure to arrive at the desired controller.
Amir Nassirharand was born on January 12, 1961 at Tehran, Iran. He received his BSME (1980), MSME (1981), and Ph.D. in Mechanical Engineering in 1986 all from Oklahoma State University. Since 1986, he has been in academic and/or nonacademic environments in North America, Middle East, and East Asia.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,75 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Nassirharand AmirAmir Nassirharand was born on January 12, 1961 at Tehran, Iran. He received his BSME (1980), MSME (1981), and Ph.D. in Mechanical Engineering in 1986 all from Oklahoma State University. Since 1986, he has been i. Bestandsnummer des Verkäufers 5467236
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This publication investigates the applicability of the simultaneous stabilization theory to design of linear controllers based on two quasilinear models of a highly nonlinear plant. For a robotic problem, it is found that a linear controller, that stabilizes the two linear approximations of the quasilinear models and achieves certain performance measures for both linear plants, may indeed stabilize and force the actual nonlinear feedback system to satisfy a set of performance measures. However, there may be cases that this would not be true. The design procedure involves direct simulation and evaluation of Fourier integrals to arrive at the describing function models of the plant. There are no restrictions on nonlinearity type (i.e., could be continuous or discontinuous), nonlinearity arrangement (i.e., could be in forward path, feedback path, and could be implicit or explicit), and system order. Two linear approximations to the two of the obtained quasilinear models are identified. This is followed by application of the Simplex optimization procedure to arrive at the desired controller.Books on Demand GmbH, Überseering 33, 22297 Hamburg 192 pp. Englisch. Bestandsnummer des Verkäufers 9783843373296
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This publication investigates the applicability of the simultaneous stabilization theory to design of linear controllers based on two quasilinear models of a highly nonlinear plant. For a robotic problem, it is found that a linear controller, that stabilizes the two linear approximations of the quasilinear models and achieves certain performance measures for both linear plants, may indeed stabilize and force the actual nonlinear feedback system to satisfy a set of performance measures. However, there may be cases that this would not be true. The design procedure involves direct simulation and evaluation of Fourier integrals to arrive at the describing function models of the plant. There are no restrictions on nonlinearity type (i.e., could be continuous or discontinuous), nonlinearity arrangement (i.e., could be in forward path, feedback path, and could be implicit or explicit), and system order. Two linear approximations to the two of the obtained quasilinear models are identified. This is followed by application of the Simplex optimization procedure to arrive at the desired controller. Bestandsnummer des Verkäufers 9783843373296
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This publication investigates the applicability of the simultaneous stabilization theory to design of linear controllers based on two quasilinear models of a highly nonlinear plant. For a robotic problem, it is found that a linear controller, that stabilizes the two linear approximations of the quasilinear models and achieves certain performance measures for both linear plants, may indeed stabilize and force the actual nonlinear feedback system to satisfy a set of performance measures. However, there may be cases that this would not be true. The design procedure involves direct simulation and evaluation of Fourier integrals to arrive at the describing function models of the plant. There are no restrictions on nonlinearity type (i.e., could be continuous or discontinuous), nonlinearity arrangement (i.e., could be in forward path, feedback path, and could be implicit or explicit), and system order. Two linear approximations to the two of the obtained quasilinear models are identified. This is followed by application of the Simplex optimization procedure to arrive at the desired controller. 192 pp. Englisch. Bestandsnummer des Verkäufers 9783843373296
Anzahl: 2 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA75838433732996
Anzahl: 1 verfügbar