Verwandte Artikel zu Analysis of Time Series Data in the Presence of Outliers:...

Analysis of Time Series Data in the Presence of Outliers: In frequency domain - Softcover

 
9783844323542: Analysis of Time Series Data in the Presence of Outliers: In frequency domain

Inhaltsangabe

This book deals with the methods of detection, and identification of outliers in time series data in the frequency domain. It also discusses the method of analysis that would be insensitive to outliers. The author uses some robust regression method to fit sine and cosine coefficients at each Fourier frequency assuming additive outlier (AO) and multiplicative outliers (MO) respectively to obtain discrete Fourier transform for removing outliers from time series data. The parameters of the contaminated series were estimated using the maximum likelihood (ML) method and the statistical properties of the derived estimates were investigated. Two algorithms were proposed for detection and accommodation of aberrant observations in the frequency domain while modified test statistic using a more robust estimate that is resistant to outlier were also developed to test each observation for discordance. A new filtering method of accommodating outliers was also suggested and the performance of various accommodation techniques was determined in respect of the fixed and dynamic models.Real life and simulated data were used to illustrate the techniques.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This book deals with the methods of detection, and identification of outliers in time series data in the frequency domain. It also discusses the method of analysis that would be insensitive to outliers. The author uses some robust regression method to fit sine and cosine coefficients at each Fourier frequency assuming additive outlier (AO) and multiplicative outliers (MO) respectively to obtain discrete Fourier transform for removing outliers from time series data. The parameters of the contaminated series were estimated using the maximum likelihood (ML) method and the statistical properties of the derived estimates were investigated. Two algorithms were proposed for detection and accommodation of aberrant observations in the frequency domain while modified test statistic using a more robust estimate that is resistant to outlier were also developed to test each observation for discordance. A new filtering method of accommodating outliers was also suggested and the performance of various accommodation techniques was determined in respect of the fixed and dynamic models.Real life and simulated data were used to illustrate the techniques.

Biografía del autor

Dr. O.I. Shittu had B.Sc, M.Sc; M.Phil and Ph.D degrees in statistics from the University of Ibadan, Nigeria. A Chattered Statistician (CStat) and Chattered Scientist (CSci) of the Royal Statistical Society (RSS) London. He also hold an Ordinary Certificate in Statistics awarded by the Institute of Statisticians (IOS) London in 1986

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Like New
Diesen Artikel anzeigen

EUR 28,63 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

EUR 23,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Analysis of Time Series Data in the Presence of Outliers:...

Foto des Verkäufers

Olanrewaju Shittu
ISBN 10: 3844323546 ISBN 13: 9783844323542
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book deals with the methods of detection, and identification of outliers in time series data in the frequency domain. It also discusses the method of analysis that would be insensitive to outliers. The author uses some robust regression method to fit sine and cosine coefficients at each Fourier frequency assuming additive outlier (AO) and multiplicative outliers (MO) respectively to obtain discrete Fourier transform for removing outliers from time series data. The parameters of the contaminated series were estimated using the maximum likelihood (ML) method and the statistical properties of the derived estimates were investigated. Two algorithms were proposed for detection and accommodation of aberrant observations in the frequency domain while modified test statistic using a more robust estimate that is resistant to outlier were also developed to test each observation for discordance. A new filtering method of accommodating outliers was also suggested and the performance of various accommodation techniques was determined in respect of the fixed and dynamic models.Real life and simulated data were used to illustrate the techniques. 132 pp. Englisch. Bestandsnummer des Verkäufers 9783844323542

Verkäufer kontaktieren

Neu kaufen

EUR 59,00
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Olanrewaju Shittu
ISBN 10: 3844323546 ISBN 13: 9783844323542
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Shittu OlanrewajuDr. O.I. Shittu had B.Sc, M.Sc M.Phil and Ph.D degrees in statistics from the University of Ibadan, Nigeria. A Chattered Statistician (CStat) and Chattered Scientist (CSci) of the Royal Statistical Society (RSS) Lon. Bestandsnummer des Verkäufers 5472781

Verkäufer kontaktieren

Neu kaufen

EUR 48,50
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Olanrewaju Shittu
ISBN 10: 3844323546 ISBN 13: 9783844323542
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book deals with the methods of detection, and identification of outliers in time series data in the frequency domain. It also discusses the method of analysis that would be insensitive to outliers. The author uses some robust regression method to fit sine and cosine coefficients at each Fourier frequency assuming additive outlier (AO) and multiplicative outliers (MO) respectively to obtain discrete Fourier transform for removing outliers from time series data. The parameters of the contaminated series were estimated using the maximum likelihood (ML) method and the statistical properties of the derived estimates were investigated. Two algorithms were proposed for detection and accommodation of aberrant observations in the frequency domain while modified test statistic using a more robust estimate that is resistant to outlier were also developed to test each observation for discordance. A new filtering method of accommodating outliers was also suggested and the performance of various accommodation techniques was determined in respect of the fixed and dynamic models.Real life and simulated data were used to illustrate the techniques.Books on Demand GmbH, Überseering 33, 22297 Hamburg 132 pp. Englisch. Bestandsnummer des Verkäufers 9783844323542

Verkäufer kontaktieren

Neu kaufen

EUR 59,00
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Olanrewaju Shittu
ISBN 10: 3844323546 ISBN 13: 9783844323542
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book deals with the methods of detection, and identification of outliers in time series data in the frequency domain. It also discusses the method of analysis that would be insensitive to outliers. The author uses some robust regression method to fit sine and cosine coefficients at each Fourier frequency assuming additive outlier (AO) and multiplicative outliers (MO) respectively to obtain discrete Fourier transform for removing outliers from time series data. The parameters of the contaminated series were estimated using the maximum likelihood (ML) method and the statistical properties of the derived estimates were investigated. Two algorithms were proposed for detection and accommodation of aberrant observations in the frequency domain while modified test statistic using a more robust estimate that is resistant to outlier were also developed to test each observation for discordance. A new filtering method of accommodating outliers was also suggested and the performance of various accommodation techniques was determined in respect of the fixed and dynamic models.Real life and simulated data were used to illustrate the techniques. Bestandsnummer des Verkäufers 9783844323542

Verkäufer kontaktieren

Neu kaufen

EUR 59,00
Währung umrechnen
Versand: EUR 61,08
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shittu, Olanrewaju
ISBN 10: 3844323546 ISBN 13: 9783844323542
Gebraucht Paperback

Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA79638443235466

Verkäufer kontaktieren

Gebraucht kaufen

EUR 119,13
Währung umrechnen
Versand: EUR 28,63
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb