Recent evidence suggests that 18-29% of eukaryotic genomes encode enzymes. However, only a limited proportion of these enzymes have thus far been characterized, and little is understood about the physiological roles, substrate specificity and downstream targets of the vast majority of these important proteins. While advances in sequencing and molecular biology have made it feasible to quickly amass a great wealth of genetic information, sparking the genomic revolution, similar capabilities are severely lacking in the relatively nascent proteomics arena. A key step towards the biological characterization of enzymes, as well as in their adoption as drug targets, is the development of global solutions that bridge the gap in understanding proteins and their interactions. This thesis examines and addresses these challenges by introducing a series of technologies that span various analytical modes, effectively expanding current capabilities in protein profiling by leveraging on throughput.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Recent evidence suggests that 18-29% of eukaryotic genomes encode enzymes. However, only a limited proportion of these enzymes have thus far been characterized, and little is understood about the physiological roles, substrate specificity and downstream targets of the vast majority of these important proteins. While advances in sequencing and molecular biology have made it feasible to quickly amass a great wealth of genetic information, sparking the genomic revolution, similar capabilities are severely lacking in the relatively nascent proteomics arena. A key step towards the biological characterization of enzymes, as well as in their adoption as drug targets, is the development of global solutions that bridge the gap in understanding proteins and their interactions. This thesis examines and addresses these challenges by introducing a series of technologies that span various analytical modes, effectively expanding current capabilities in protein profiling by leveraging on throughput.
Mahesh Uttamchandani joined DSO National Laboratories in 2007, after graduating with a PhD in Biology from the National Univeristy of Singapore (NUS). He also concurrently holds an Assistant Professor position at the Departments of Chemistry and Biological Sciences at NUS. His research interests include catalomics, genetics and proteomics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,66 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 23,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Recent evidence suggests that 18-29% of eukaryotic genomes encode enzymes. However, only a limited proportion of these enzymes have thus far been characterized, and little is understood about the physiological roles, substrate specificity and downstream targets of the vast majority of these important proteins. While advances in sequencing and molecular biology have made it feasible to quickly amass a great wealth of genetic information, sparking the genomic revolution, similar capabilities are severely lacking in the relatively nascent proteomics arena. A key step towards the biological characterization of enzymes, as well as in their adoption as drug targets, is the development of global solutions that bridge the gap in understanding proteins and their interactions. This thesis examines and addresses these challenges by introducing a series of technologies that span various analytical modes, effectively expanding current capabilities in protein profiling by leveraging on throughput. 228 pp. Englisch. Bestandsnummer des Verkäufers 9783844385755
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Uttamchandani MaheshMahesh Uttamchandani joined DSO National Laboratories in 2007, after graduating with a PhD in Biology from the National Univeristy of Singapore (NUS). He also concurrently holds an Assistant Professor position a. Bestandsnummer des Verkäufers 5476095
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Recent evidence suggests that 18-29% of eukaryotic genomes encode enzymes. However, only a limited proportion of these enzymes have thus far been characterized, and little is understood about the physiological roles, substrate specificity and downstream targets of the vast majority of these important proteins. While advances in sequencing and molecular biology have made it feasible to quickly amass a great wealth of genetic information, sparking the genomic revolution, similar capabilities are severely lacking in the relatively nascent proteomics arena. A key step towards the biological characterization of enzymes, as well as in their adoption as drug targets, is the development of global solutions that bridge the gap in understanding proteins and their interactions. This thesis examines and addresses these challenges by introducing a series of technologies that span various analytical modes, effectively expanding current capabilities in protein profiling by leveraging on throughput.Books on Demand GmbH, Überseering 33, 22297 Hamburg 228 pp. Englisch. Bestandsnummer des Verkäufers 9783844385755
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Recent evidence suggests that 18-29% of eukaryotic genomes encode enzymes. However, only a limited proportion of these enzymes have thus far been characterized, and little is understood about the physiological roles, substrate specificity and downstream targets of the vast majority of these important proteins. While advances in sequencing and molecular biology have made it feasible to quickly amass a great wealth of genetic information, sparking the genomic revolution, similar capabilities are severely lacking in the relatively nascent proteomics arena. A key step towards the biological characterization of enzymes, as well as in their adoption as drug targets, is the development of global solutions that bridge the gap in understanding proteins and their interactions. This thesis examines and addresses these challenges by introducing a series of technologies that span various analytical modes, effectively expanding current capabilities in protein profiling by leveraging on throughput. Bestandsnummer des Verkäufers 9783844385755
Anzahl: 1 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA79638443857546
Anzahl: 1 verfügbar