Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect.
Dr. Ashok Kumar received the BE and ME degree in Electronics and Commn. and Ph.D by VTU, India, for his work on Advanced Image Processing Techniques and Algorithms for Classification of High Resolution RS Data. His subjects of interest are Image Processing, Communication Engg., Data Mining and Remote Sensing. He is in teaching for over 22 years.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 29,47 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar T. AshokDr. Ashok Kumar received the BE and ME degree in Electronics and Commn. and Ph.D by VTU, India, for his work on Advanced Image Processing Techniques and Algorithms for Classification of High Resolution RS Data. His subj. Bestandsnummer des Verkäufers 5510111
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect. Bestandsnummer des Verkäufers 9783847324225
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect. 260 pp. Englisch. Bestandsnummer des Verkäufers 9783847324225
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect.Books on Demand GmbH, Überseering 33, 22297 Hamburg 260 pp. Englisch. Bestandsnummer des Verkäufers 9783847324225
Anzahl: 2 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA78738473242256
Anzahl: 1 verfügbar