Supervised learning deals with the problem of discovering models from data as relationships between input and output attributes. Two types of models are distinguished: regression models (for continuous output attributes) and classification models (for discrete output attributes). This thesis addresses both regression and classification problems with an emphasis on new applications and on presenting improved evolutionary techniques. Such techniques include Gene Expression Programming (classical and its adaptive version), Genetic Programming, and the hypernetwork model of learning (classical and its evolutionary version). Such methods can be successfully applied to many problems from various domains. This thesis presents applications for symbolic regression for inverse problems, quantum circuit design, modeling of dynamic processes, and forecasting price movement.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Supervised learning deals with the problem of discovering models from data as relationships between input and output attributes. Two types of models are distinguished: regression models (for continuous output attributes) and classification models (for discrete output attributes). This thesis addresses both regression and classification problems with an emphasis on new applications and on presenting improved evolutionary techniques. Such techniques include Gene Expression Programming (classical and its adaptive version), Genetic Programming, and the hypernetwork model of learning (classical and its evolutionary version). Such methods can be successfully applied to many problems from various domains. This thesis presents applications for symbolic regression for inverse problems, quantum circuit design, modeling of dynamic processes, and forecasting price movement.
Elena Băutu received her Ph.D. degree in Artificial Intelligence in 2010 from the "Alexandru Ioan Cuza" University (Romania). Her doctoral studies covered the application of nature inspired meta-heuristics and learning models to data mining problems, focusing on time series modeling and forecasting problems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,88 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 48,99 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bautu ElenaElena Bautu received her Ph.D. degree in Artificial Intelligence in 2010 from the Alexandru Ioan Cuza University (Romania). Her doctoral studies covered the application of nature inspired meta-heuristics and learning mod. Bestandsnummer des Verkäufers 5521926
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA75838484347925
Anzahl: 1 verfügbar