This work was to establish whether it was possible to achieve a reasonable speedup by implementing FPGA based Hopfield neural networks for some simple constraint satisfaction problems. The results are significant – our initial implementation using standard Xilinx FPGAs yielded 2-3 orders of magnitude speedup over the Sun Blade 2000 workstation comes with 1.2-GHz version of the 64-bit UltraSPARC III Cu processor. The main problem with the work to date is that the problems are both unrealistically small and simplistic. That is the constraints on the N-Queen problem are simpler than those found in many real world scheduling applications. Thus, it is not clear whether we will be able to optimize the neuron structure for more complex problems since the weights matrix may not contain as many zero elements. Thus a new method for speed improvement of Hopfield neural networks for solving constraint satisfaction problems using Field Programmable Gate Arrays (FPGAs) was proposed and implemented.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This work was to establish whether it was possible to achieve a reasonable speedup by implementing FPGA based Hopfield neural networks for some simple constraint satisfaction problems. The results are significant - our initial implementation using standard Xilinx FPGAs yielded 2-3 orders of magnitude speedup over the Sun Blade 2000 workstation comes with 1.2-GHz version of the 64-bit UltraSPARC III Cu processor. The main problem with the work to date is that the problems are both unrealistically small and simplistic. That is the constraints on the N-Queen problem are simpler than those found in many real world scheduling applications. Thus, it is not clear whether we will be able to optimize the neuron structure for more complex problems since the weights matrix may not contain as many zero elements. Thus a new method for speed improvement of Hopfield neural networks for solving constraint satisfaction problems using Field Programmable Gate Arrays (FPGAs) was proposed and implemented.
Avvaru Srinivasulu was born in Andhrapradesh, India, in 1985. He received the B.Tech degree in Electronics and Control Engineering in 2006 and M.Tech degree in Instrumentation and Control Systems in 2008 from Jawaharlal Nehru Technological University, Hyderabad.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,91 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Srinivasulu AvvaruAvvaru Srinivasulu was born in Andhrapradesh, India, in 1985. He received the B.Tech degree in Electronics and Control Engineering in 2006 and M.Tech degree in Instrumentation and Control Systems in 2008 from Jawaha. Bestandsnummer des Verkäufers 5521977
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This work was to establish whether it was possible to achieve a reasonable speedup by implementing FPGA based Hopfield neural networks for some simple constraint satisfaction problems. The results are significant our initial implementation using standard Xilinx FPGAs yielded 2-3 orders of magnitude speedup over the Sun Blade 2000 workstation comes with 1.2-GHz version of the 64-bit UltraSPARC III Cu processor. The main problem with the work to date is that the problems are both unrealistically small and simplistic. That is the constraints on the N-Queen problem are simpler than those found in many real world scheduling applications. Thus, it is not clear whether we will be able to optimize the neuron structure for more complex problems since the weights matrix may not contain as many zero elements. Thus a new method for speed improvement of Hopfield neural networks for solving constraint satisfaction problems using Field Programmable Gate Arrays (FPGAs) was proposed and implemented. Bestandsnummer des Verkäufers 9783848435456
Anzahl: 2 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783848435456
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783848435456_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783848435456
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783848435456
Anzahl: 10 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783848435456
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0316110144167
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA75838484354546
Anzahl: 1 verfügbar