Moving object detection in digital image sequence involves identification of the presence of an object in consecutive frames where as object tracking is used to monitor the movements with respect to the region of interest. In this project, the motion estimation is obtained using Optical Flow. Optical Flow is the distribution of apparent velocities of movement of brightness patterns in an image. Lucas-Kanade algorithm with Sobel, Horn and Guassian smoothing techniques is used in this work for computation of Optical Flow vectors. Single and multiple object movements with respect to the computed vectors are segmented using thresholding. The extracted movements are tracked using edge and centroid information. Suitable image enhancement techniques are applied to the segmented results to avoid the unwanted information present in the image. Real and virtual image data with static and dynamic environment are used as test sequences to validate the developed algorithms. The tracking performance, in terms of their accuracy and computation time, of the different algorithms with and without image pyramid is analysed and compared in MATLAB & C on Intel Core2 Duo processor on Linux environment.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Moving object detection in digital image sequence involves identification of the presence of an object in consecutive frames where as object tracking is used to monitor the movements with respect to the region of interest. In this project, the motion estimation is obtained using Optical Flow. Optical Flow is the distribution of apparent velocities of movement of brightness patterns in an image. Lucas-Kanade algorithm with Sobel, Horn and Guassian smoothing techniques is used in this work for computation of Optical Flow vectors. Single and multiple object movements with respect to the computed vectors are segmented using thresholding. The extracted movements are tracked using edge and centroid information. Suitable image enhancement techniques are applied to the segmented results to avoid the unwanted information present in the image. Real and virtual image data with static and dynamic environment are used as test sequences to validate the developed algorithms. The tracking performance, in terms of their accuracy and computation time, of the different algorithms with and without image pyramid is analysed and compared in MATLAB & C on Intel Core2 Duo processor on Linux environment.
Manjunath Basavaiah received his U.G. degree B.E. inElectronics and Communication Engineering fromGlobal Academy of Technology, Bangalore & P.G.degree M.Sc [Engg] in Real Time Embedded Systemsfrom Coventry University (U.K), MSRSAS, Bangalore in2011. His research area includes Embedded SystemDesign, Control System, Signal & Image Processing
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,82 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 48,99 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Basavaiah ManjunathManjunath Basavaiah received his U.G. degree B.E. inElectronics and Communication Engineering fromGlobal Academy of Technology, Bangalore & P.G.degree M.Sc [Engg] in Real Time Embedded Systemsfrom Coventry Universi. Bestandsnummer des Verkäufers 5522131
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA75838484374226
Anzahl: 1 verfügbar