The study of flow-induced noise, known as aeroacoustics, is concerned with the sound generated by turbulent and/or unsteady vortical flows including the effects of any solid boundaries in the flow. Flow-induced noise is a serious problem in many engineering applications. The most notorious one is the jet noise. In this work a shock-capturing adaptive filter is designed. It is indispensable with non linear propagation of acoustic waves or in cases when discontinuities are presents. With the combination of Dispersion Relation Schemes, Runge-Kutta optimized algorithm, selective and nonlinear filter it is possible to calculate directly acoustic and aerodynamic field in a single computation, by solving the compressible unsteady Navier-Stokes equations. Actually, traditional theories using acoustic analogy are appropriate for predicting noise when a sufficiently accurate solution of turbulent flow is available. On the contrary, the approach proposed here can be applied to cases when aerodynamic sources are influenced by acoustic motion such as flames, jet or wake instabilities. This work has been done in collaboration with Dr. Christophe Bogey of École Centrale de Lyon, France.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The study of flow-induced noise, known as aeroacoustics, is concerned with the sound generated by turbulent and/or unsteady vortical flows including the effects of any solid boundaries in the flow. Flow-induced noise is a serious problem in many engineering applications. The most notorious one is the jet noise. In this work a shock-capturing adaptive filter is designed. It is indispensable with non linear propagation of acoustic waves or in cases when discontinuities are presents. With the combination of Dispersion Relation Schemes, Runge-Kutta optimized algorithm, selective and nonlinear filter it is possible to calculate directly acoustic and aerodynamic field in a single computation, by solving the compressible unsteady Navier-Stokes equations. Actually, traditional theories using acoustic analogy are appropriate for predicting noise when a sufficiently accurate solution of turbulent flow is available. On the contrary, the approach proposed here can be applied to cases when aerodynamic sources are influenced by acoustic motion such as flames, jet or wake instabilities. This work has been done in collaboration with Dr. Christophe Bogey of École Centrale de Lyon, France.
Roberto Della Ratta Rinaldi is an aerospace engineer with a PhD in Fluid Mechanics and Aeroacoustics taken at Politecnico di Torino, Italy. His research activity is focused on computational method for aeroacoustic propagation of sound waves with non uniform mean flow and complex geometries typical of industrial needs.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,91 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Della Ratta Rinaldi RobertoRoberto Della Ratta Rinaldi is an aerospace engineer with a PhD in Fluid Mechanics and Aeroacoustics taken at Politecnico di Torino, Italy. His research activity is focused on computational method for aeroa. Bestandsnummer des Verkäufers 5522936
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA758384844819X6
Anzahl: 1 verfügbar