Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots’ locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots' locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots.
Dr. Shibendu Shekhar Roy, Assistant Professor, Dept. of Mechanical Engineering, National Institute of Technology, Durgapur, India. Dr. Dilip Kumar Pratihar, Professor, Indian Institute of Technology, Kharagpur, India. He completed his post-doctoral studies in Germany under the AvH Fellowship Programme. Research areas: Robotics and Soft Computing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,97 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Roy Shibendu ShekharDr. Shibendu Shekhar Roy, Assistant Professor, Dept. of Mechanical Engineering, National Institute of Technology, Durgapur, India. Dr. Dilip Kumar Pratihar, Professor, Indian Institute of Technology, Kharagpur, In. Bestandsnummer des Verkäufers 5523055
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots¿ locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots. 204 pp. Englisch. Bestandsnummer des Verkäufers 9783848449774
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots¿ locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots. Bestandsnummer des Verkäufers 9783848449774
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots¿ locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots.Books on Demand GmbH, Überseering 33, 22297 Hamburg 204 pp. Englisch. Bestandsnummer des Verkäufers 9783848449774
Anzahl: 2 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA77338484497736
Anzahl: 1 verfügbar