In seiner Arbeit beschäftigt sich der Autor mit der 'Markov Chain Monte Carlo', auch abgekürzt als MCMC. Dabei handelt es sich um eine Monte Carlo Methode. Allen Monte Carlo Methoden ist gemein, dass sie von einer mehr oder minder komplizierten Verteilung zufällige Szenarien erzeugen. Diese Szenarien werden dann genutzt um Aussagen über Erwartungswerte oder andere Kennzahlen der Verteilung zu treffen. Diese Aussagen sind natürlich nur zu gebrauchen, wenn man sehr viele zufällig erzeugte Szenarien auswertet. Die Methode kommt also immer dann zum Einsatz, wenn es nicht möglich ist, aus der Verteilung der Szenarien direkt Rückschlüsse auf die statistischen Kennzahlen der Verteilung zu ziehen, weder auf analytischem Wege, noch durch numerische Integration (bei sehr vielen Dimensionen steigt der Aufwand rapide an). Markov Chain Monte Carlo ist nun eine spezielle Monte Carlo Methode unter Zuhilfenahme von Markovketten. Diese kommt immer dann zum Einsatz, wenn es nicht möglich ist, von einer Verteilung auf einfache Weise Szenarien zu erzeugen. Eine Markovkette fängt bei einem Zustand an und geht von einem bestimmten Zustand mit einer bestimmten Wahrscheinlichkeit zu einem anderen Zustand über. Diese Übergangswahrscheinlichkeiten stehen in einer Übergangsmatrix. Der Knackpunkt ist nun, dass diese Form der Zustandsgenerierung oft einfacher zu implementieren ist, als direkt auf eine Verteilung zurückzugreifen. In der Arbeit gibt es mehrere konkrete Beispiele für den Einsatz solcher Methoden. Quelltexte der Implementierungen sind beigefügt.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Thomas Plehn ist studierter Lehrer für Mathematik und Physik mit erstem Staatsexamen 2007 an der Universität Bielefeld. Nach einem zusätzlichen Masterstudium der Optimierung und Simulation an der FH Bielefeld ist er nun in der Softwareindustrie tätig.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783956844515
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Apr0316110176412
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783956844515
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783956844515_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783956844515
Anzahl: 10 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In seiner Arbeit beschäftigt sich der Autor mit der Markov Chain Monte Carlo , auch abgekürzt als MCMC. Dabei handelt es sich um eine Monte Carlo Methode. Allen Monte Carlo Methoden ist gemein, dass sie von einer mehr oder minder komplizierten Verteilung zufällige Szenarien erzeugen. Diese Szenarien werden dann genutzt um Aussagen über Erwartungswerte oder andere Kennzahlen der Verteilung zu treffen. Diese Aussagen sind natürlich nur zu gebrauchen, wenn man sehr viele zufällig erzeugte Szenarien auswertet. Die Methode kommt also immer dann zum Einsatz, wenn es nicht möglich ist, aus der Verteilung der Szenarien direkt Rückschlüsse auf die statistischen Kennzahlen der Verteilung zu ziehen, weder auf analytischem Wege, noch durch numerische Integration (bei sehr vielen Dimensionen steigt der Aufwand rapide an). Markov Chain Monte Carlo ist nun eine spezielle Monte Carlo Methode unter Zuhilfenahme von Markovketten. Diese kommt immer dann zum Einsatz, wenn es nicht möglich ist, von einer Verteilung auf einfache Weise Szenarien zu erzeugen. Eine Markovkette fängt bei einem Zustand an und geht von einem bestimmten Zustand mit einer bestimmten Wahrscheinlichkeit zu einem anderen Zustand über. Diese Übergangswahrscheinlichkeiten stehen in einer Übergangsmatrix. Der Knackpunkt ist nun, dass diese Form der Zustandsgenerierung oft einfacher zu implementieren ist, als direkt auf eine Verteilung zurückzugreifen. In der Arbeit gibt es mehrere konkrete Beispiele für den Einsatz solcher Methoden. Quelltexte der Implementierungen sind beigefügt. 56 pp. Deutsch. Bestandsnummer des Verkäufers 9783956844515
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 58. Bestandsnummer des Verkäufers 26128874526
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 58 25:B&W 5.83 x 8.27 in or 210 x 148 mm (A5) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 131712961
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 58. Bestandsnummer des Verkäufers 18128874516
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In seiner Arbeit beschaeftigt sich der Autor mit der Markov Chain Monte Carlo , auch abgekuerzt als MCMC. Dabei handelt es sich um eine Monte Carlo Methode. Allen Monte Carlo Methoden ist gemein, dass sie von einer mehr oder minder komplizierten Verteilung zu. Bestandsnummer des Verkäufers 5739365
Anzahl: Mehr als 20 verfügbar