This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory.Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes.In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered.Books on Demand GmbH, Überseering 33, 22297 Hamburg 164 pp. Englisch. Bestandsnummer des Verkäufers 9783958260641
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Counting Polynomial Matrices over Finite Fields | Matrices with Certain Primeness Properties and Applications to Linear Systems and Coding Theory | Julia Lieb | Taschenbuch | 164 S. | Englisch | 2017 | Würzburg University Press | EAN 9783958260641 | Verantwortliche Person für die EU: Julius-Maximilians-Universität, Würzburg University Press - Universitätsbibliothek, Am Hubland 1, 97074 Würzburg, wup[at]uni-wuerzburg[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 109725620
Anzahl: 5 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory.Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes.In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered. 164 pp. Englisch. Bestandsnummer des Verkäufers 9783958260641
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory.Primeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transferred to criteria for non-catastrophicity of convolutional codes.In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional code is non-catastrophic. Moreover, other networks of linear systems and convolutional codes are considered. Bestandsnummer des Verkäufers 9783958260641
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Über den AutorrnrnGeboren 1988 in Kronach, M.Sc. (Mathematik), Studium der Faecher Mathematik, Katholische Theologie und Erziehungswissenschaften (Staatsexamen)KlappentextrnrnThis book is dealing with three mathematical a. Bestandsnummer des Verkäufers 449799731
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783958260641
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783958260641_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783958260641
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 164. Bestandsnummer des Verkäufers 18375506457
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 164. Bestandsnummer des Verkäufers 26375506451
Anzahl: 4 verfügbar