Verwandte Artikel zu Markov Random Field Modeling in Computer Vision

Markov Random Field Modeling in Computer Vision - Softcover

 
9784431669340: Markov Random Field Modeling in Computer Vision

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

1 Introduction.- 1.1 Visual Labeling.- 1.1.1 Sites and Labels.- 1.1.2 The Labeling Problem.- 1.1.3 Labeling Problems in Vision.- 1.1.4 Labeling with Contextual Constraints.- 1.2 Markov Random Fields and Gibbs Distributions.- 1.2.1 Neighborhood System and Cliques.- 1.2.2 Markov Random Fields.- 1.2.3 Gibbs Random Fields.- 1.2.4 Markov-Gibbs Equivalence.- 1.2.5 Normalized and Canonical Forms.- 1.3 Useful MRF Models.- 1.3.1 Auto-Models.- 1.3.2 Multi-Level Logistic Model.- 1.3.3 The Smoothness Prior.- 1.3.4 Hierarchical GRF Model.- 1.4 Optimization-Based Vision.- 1.4.1 Research Issues.- 1.4.2 Role of Energy Functions.- 1.4.3 Formulation of Objective Functions.- 1.4.4 Optimality Criteria.- 1.5 Bayes Labeling of MRFs.- 1.5.1 Bayes Estimation.- 1.5.2 MAP-MRF Labeling.- 1.5.3 Regularization.- 1.5.4 Summary of MAP-MRF Approach.- 2 Low Level MRF Models.- 2.1 Observation Models.- 2.2 Image Restoration and Reconstruction.- 2.2.1 MRF Priors for Image Surfaces.- 2.2.2 Piecewise Constant Restoration.- 2.2.3 Piecewise Continuous Restoration.- 2.2.4 Surface Reconstruction.- 2.3 Edge Detection.- 2.3.1 Edge Labeling using Line Process.- 2.3.2 Forbidden Edge Patterns.- 2.4 Texture Synthesis and Analysis.- 2.4.1 MRF Texture Modeling.- 2.4.2 Texture Segmentation.- 2.5 Optical Flow.- 2.5.1 Variational Approach.- 2.5.2 Flow Discontinuities.- 3 Discontinuities in MRFs.- 3.1 Smoothness, Regularization and Discontinuities.- 3.1.1 Regularization and Discontinuities.- 3.1.2 Other Regularization Models.- 3.2 The Discontinuity Adaptive MRF Model.- 3.2.1 Defining the DA Model.- 3.2.2 Relations with Previous Models.- 3.2.3 Discrete Data and 2D Cases.- 3.2.4 Solution Stability.- 3.3 Computation of DA Solutions.- 3.3.1 Solving the Euler Equation.- 3.3.2 Experimental Results.- 3.4 Conclusion.- 4 Discontinuity-Adaptivity Model and Robust Estimation.- 4.1 The DA Prior and Robust Statistics.- 4.1.1 Robust M Estimator.- 4.1.2 Problems with M Estimator.- 4.1.3 Redefinition of M Estimator.- 4.1.4 AM Estimator.- 4.1.5 Convex DA and M-Estimation Models.- 4.2 Experimental Comparison.- 4.2.1 Location Estimation.- 4.2.2 Rotation Angle Estimation.- 5 High Level MRF Models.- 5.1 Matching under Relational Constraints.- 5.1.1 Relational Structure Representation.- 5.1.2 Work in Relational Matching.- 5.2 MRF-Based Matching.- 5.2.1 Posterior Probability and Energy.- 5.2.2 Matching to Multiple Objects.- 5.2.3 Experiments.- 5.2.4 Extensions.- 5.3 Pose Computation.- 5.3.1 Pose Clustering and Estimation.- 5.3.2 Simultaneous Matching and Pose.- 5.3.3 Discussion.- 6 MRF Parameter Estimation.- 6.1 Supervised Estimation with Labeled Data.- 6.1.1 Maximum Likelihood.- 6.1.2 Pseudo-Likelihood.- 6.1.3 Coding Method.- 6.1.4 Mean Field Approximations.- 6.1.5 Least Squares Fit.- 6.2 Unsupervised Estimation with Unlabeled Data.- 6.2.1 Simultaneous Restoration and Estimation.- 6.2.2 Simultaneous Segmentation and Estimation.- 6.2.3 Expectation-Maximization.- 6.2.4 Cross Validation.- 6.3 Further Issues.- 6.3.1 Estimating the Number of MRFs.- 6.3.2 Reduction of Nonzero Parameters.- 7 Parameter Estimation in Optimal Object Recognition.- 7.1 Motivation.- 7.2 Theory of Parameter Estimation for Recognition.- 7.2.1 Optimization-Based Object Recognition.- 7.2.2 Criteria for Parameter Estimation.- 7.2.3 Linear Classification Function.- 7.2.4 A Non-parametric Learning Algorithm.- 7.2.5 Reducing Search Space.- 7.3 Application in MRF Object Recognition.- 7.3.1 Posterior Energy.- 7.3.2 Energy in Linear Form.- 7.3.3 How Minimal Configuration Changes.- 7.3.4 Parametric Estimation under Gaussian Noise.- 7.4 Experiments.- 7.4.1 Recognition of Line Patterns.- 7.4.2 Recognition of Curved Objects.- 7.5 Conclusion.- 8 Minimization - Local Methods.- 8.1 Classical Minimization with Continuous Labels.- 8.2 Minimization with Discrete Labels.- 8.2.1 Iterated Conditional Modes.- 8.2.2 Relaxation Labeling.- 8.2.3 Highest Confidence First.- 8.2.4 Dynamic Programming.- 8.3 Constrained Minimization.- 8.3.1 Penalty Functions.- 8.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9780387701455: Markov Random Field Modeling in Computer Vision (Computer Science Workbench)

Vorgestellte Ausgabe

ISBN 10:  0387701451 ISBN 13:  9780387701455
Hardcover