Verwandte Artikel zu Markov Random Field Modeling in Image Analysis (Computer...

Markov Random Field Modeling in Image Analysis (Computer Science Workbench) - Softcover

 
9784431703099: Markov Random Field Modeling in Image Analysis (Computer Science Workbench)

Inhaltsangabe

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. The book covers the following parts essential to the subject: introduction to fundamental theories, formulations of MRF vision models, MRF parameter estimation, and optimization algorithms. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation.This second edition includes the most important progress in Markov modeling in image analysis in recent years such as Markov modeling of images with "macro" patterns (e.g. the FRAME model), Markov chain Monte Carlo (MCMC) methods, reversible jump MCMC. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. The book covers the following parts essential to the subject: introduction to fundamental theories, formulations of MRF vision models, MRF parameter estimation, and optimization algorithms. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This second edition includes the most important progress in Markov modeling in image analysis in recent years such as Markov modeling of images with "macro" patterns (e.g. the FRAME model), Markov chain Monte Carlo (MCMC) methods, reversible jump MCMC. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Colección 'Computer Science Workbench...
Diesen Artikel anzeigen

EUR 20,00 für den Versand von Spanien nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9784431670452: Markov Random Field Modeling in Image Analysis

Vorgestellte Ausgabe

ISBN 10:  4431670459 ISBN 13:  9784431670452
Verlag: Springer, 2014
Softcover

Suchergebnisse für Markov Random Field Modeling in Image Analysis (Computer...

Foto des Verkäufers

Stan Z. Li
Verlag: Springer, Japón, 2001
ISBN 10: 4431703098 ISBN 13: 9784431703099
Gebraucht Tapa Blanda

Anbieter: LIBRERÍA SOLÓN, Madrid, M, Spanien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Tapa Blanda. Zustand: Bien. Colección 'Computer Science Workbench'. Tapa Blanda. Profusamente ilustrado.9784431703099. Springer. Japón. 2001. 24x16 centímetros. 323 páginas. Tapa blanda. Estado=Bien. Inglés. Bestandsnummer des Verkäufers 44858

Verkäufer kontaktieren

Gebraucht kaufen

EUR 75,00
Währung umrechnen
Versand: EUR 20,00
Von Spanien nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb