Zu dieser ISBN ist aktuell kein Angebot verfügbar.
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In algebra, the determinant is a special number associated with any square matrix. The fundamental geometric meaning of a determinant is a scale factor for measure when the matrix is regarded as a linear transformation. Thus a 2 × 2 matrix with determinant 2 when applied to a set of points with finite area will transform those points into a set with twice the area. Determinants are important both in calculus, where they enter the substitution rule for several variables, and in multilinear algebra. A matrix is invertible if and only if its determinant is non-zero. The determinant of a matrix A, is denoted det(A), or without parentheses: det A. An alternative notation, used in the case where the matrix entries are written out in full, is to denote the determinant of a matrix by surrounding the matrix entries by vertical bars instead of the usual brackets or parentheses.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In algebra, the determinant is a special number associated with any square matrix. The fundamental geometric meaning of a determinant is a scale factor for measure when the matrix is regarded as a linear transformation. Thus a 2 × 2 matrix with determinant 2 when applied to a set of points with finite area will transform those points into a set with twice the area. Determinants are important both in calculus, where they enter the substitution rule for several variables, and in multilinear algebra. A matrix is invertible if and only if its determinant is non-zero. The determinant of a matrix A, is denoted det(A), or without parentheses: det A. An alternative notation, used in the case where the matrix entries are written out in full, is to denote the determinant of a matrix by surrounding the matrix entries by vertical bars instead of the usual brackets or parentheses.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
(Keine Angebote verfügbar)
Buch Finden: Kaufgesuch aufgebenSie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!
Kaufgesuch aufgeben