Claude Shannon in his celebrated noisy channel coding theorem proved the existence of channel coding schemes that can achieve an arbitrarily low error probability as long as the information is transmitted across the channel at a rate less than the channel capacity. He did not specify how to design such codes which have rate close to capacity and that is where basically error control coding comes into picture. Hence the goal of error correction coding theory is to design codes that can achieve Shannon limit. Error control coding is introduced in a communication system to transmit information from one end to the other at an acceptable rate and level of reliability and quality to user at the other end. Increasing power and channel bandwidth are not viable option .The practical option of changing the data quality from problematic to acceptable level is to use error control coding. In error control coding redundant bits are augmented with the message bits at the transmitter to provide reliable communication over a noisy channel. A proper encoding and decoding strategy employing redundant bits and message bits improves the channel capacity much closer to Shannon’s limit.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 72 pages. 8.66x5.91x0.17 inches. In Stock. Bestandsnummer des Verkäufers __6139884772
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 72 pages. 8.66x5.91x0.17 inches. In Stock. Bestandsnummer des Verkäufers zk6139884772
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ashraf UmerUmer Ashraf did his B.Tech from BGSBU and M.Tech from SMVDU, Jammu and Kashmir. He has worked as lecturer in Kashmir University and NIT Srinagar.Claude Shannon in his celebrated noisy channel coding theorem proved the . Bestandsnummer des Verkäufers 385875804
Anzahl: Mehr als 20 verfügbar