Due to the difficulties occurred in remote sensing image information, an analysis algorithms growth of a large scale image segmentation haven’t kept a place with the requirement for the methods which to develop the final accuracy of object detection as well as the recognition. Traditional Level set segmentation methods which are Chan-Vese (CV), IVC 2010, ACM with SBGFRLS, Online Region Based ACM (ORACM) were suffered from more amount of time complexity, as well as low segmentation accuracy due to the large intensity homogeneities and the noise. The robust segmentation of remote sensing images is a tedious task because due to lack of spatial information and pixel intensities are non-homogenous. In this regard region based segmentation is impossible. So this is the reason we consider clustering algorithms in pre-processing to improve the cluster efficiency & overcome the obstacles present in traditional methods. In the proposed method we were having two stages, the first stage, in order to pre-process the image we were utilizing the fuzzy logic and k-means clustering known as Fuzzy-k-Means clustering. Here the clustered segmentation results suffering from boundaries and edge leak.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kama RamuduMr. Ramudu Kama is Assistant Professor at Kakatiya Institute of Technology and Science Warangal. Smt. Kalyani Chenigaram is Assistant Professor at Kakatiya Institute of Technology and Science Warangal. Dr. Raghotham Reddy . Bestandsnummer des Verkäufers 289577119
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Due to the difficulties occurred in remote sensing image information, an analysis algorithms growth of a large scale image segmentation haven't kept a place with the requirement for the methods which to develop the final accuracy of object detection as well as the recognition. Traditional Level set segmentation methods which are Chan-Vese (CV), IVC 2010, ACM with SBGFRLS, Online Region Based ACM (ORACM) were suffered from more amount of time complexity, as well as low segmentation accuracy due to the large intensity homogeneities and the noise. The robust segmentation of remote sensing images is a tedious task because due to lack of spatial information and pixel intensities are non-homogenous. In this regard region based segmentation is impossible. So this is the reason we consider clustering algorithms in pre-processing to improve the cluster efficiency & overcome the obstacles present in traditional methods. In the proposed method we were having two stages, the first stage, in order to pre-process the image we were utilizing the fuzzy logic and k-means clustering known as Fuzzy-k-Means clustering. Here the clustered segmentation results suffering from boundaries and edge leak. 56 pp. Englisch. Bestandsnummer des Verkäufers 9786200007124
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Due to the difficulties occurred in remote sensing image information, an analysis algorithms growth of a large scale image segmentation haven¿t kept a place with the requirement for the methods which to develop the final accuracy of object detection as well as the recognition. Traditional Level set segmentation methods which are Chan-Vese (CV), IVC 2010, ACM with SBGFRLS, Online Region Based ACM (ORACM) were suffered from more amount of time complexity, as well as low segmentation accuracy due to the large intensity homogeneities and the noise. The robust segmentation of remote sensing images is a tedious task because due to lack of spatial information and pixel intensities are non-homogenous. In this regard region based segmentation is impossible. So this is the reason we consider clustering algorithms in pre-processing to improve the cluster efficiency & overcome the obstacles present in traditional methods. In the proposed method we were having two stages, the first stage, in order to pre-process the image we were utilizing the fuzzy logic and k-means clustering known as Fuzzy-k-Means clustering. Here the clustered segmentation results suffering from boundaries and edge leak.Books on Demand GmbH, Überseering 33, 22297 Hamburg 56 pp. Englisch. Bestandsnummer des Verkäufers 9786200007124
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Due to the difficulties occurred in remote sensing image information, an analysis algorithms growth of a large scale image segmentation haven't kept a place with the requirement for the methods which to develop the final accuracy of object detection as well as the recognition. Traditional Level set segmentation methods which are Chan-Vese (CV), IVC 2010, ACM with SBGFRLS, Online Region Based ACM (ORACM) were suffered from more amount of time complexity, as well as low segmentation accuracy due to the large intensity homogeneities and the noise. The robust segmentation of remote sensing images is a tedious task because due to lack of spatial information and pixel intensities are non-homogenous. In this regard region based segmentation is impossible. So this is the reason we consider clustering algorithms in pre-processing to improve the cluster efficiency & overcome the obstacles present in traditional methods. In the proposed method we were having two stages, the first stage, in order to pre-process the image we were utilizing the fuzzy logic and k-means clustering known as Fuzzy-k-Means clustering. Here the clustered segmentation results suffering from boundaries and edge leak. Bestandsnummer des Verkäufers 9786200007124
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18396030038
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26396030044
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 401428355
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 56 pages. 8.66x5.91x0.13 inches. In Stock. Bestandsnummer des Verkäufers zk6200007128
Anzahl: 1 verfügbar