Solar energy has enormous potential to serve for present energy demand of the world. Photovoltaic is an elegant process of converting the sun energy into electricity. Photovoltaic cells become matchless in transforming the sunshine into electrical energy with no air and noise pollutions. In this work an effort had been made for estimating the effects of dust addition and ambient temperature on conversion efficiency of a 62 KWp Rooftop SPV module. The performance has been evaluated by use of Capacity Utilization Factor and Performance Ratio parameters. This work estimating the decrease in the output power and conversion efficiency as a function of dust accumulation & ambient temperature. A multivariate linear regressions (MLR) model is established to estimate the system's output performance with the consideration of conversion efficiency as the dependent variable and ambient temperature and dust exposure day as the independent variables. It was employed in calculating losses in system efficiency due to dust accumulation. The average efficiency reductions due to dust is 0.872%/day, energy loss is 9.935 kWh/m-sq using MLR model.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Sumit Sharma (M. Tech Thermal Engg, PhD Pur.) is working as Assistant Professor in Dept of Mechanical Engg, Poornima College of Engineering, Jaipur. He has 15-years' experience in teaching and has published several research articles and book chapters in various SCI journals and conferences.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Solar energy has enormous potential to serve for present energy demand of the world. Photovoltaic is an elegant process of converting the sun energy into electricity. Photovoltaic cells become matchless in transforming the sunshine into electrical energy with no air and noise pollutions. In this work an effort had been made for estimating the effects of dust addition and ambient temperature on conversion efficiency of a 62 KWp Rooftop SPV module. The performance has been evaluated by use of Capacity Utilization Factor and Performance Ratio parameters. This work estimating the decrease in the output power and conversion efficiency as a function of dust accumulation & ambient temperature. A multivariate linear regressions (MLR) model is established to estimate the system's output performance with the consideration of conversion efficiency as the dependent variable and ambient temperature and dust exposure day as the independent variables. It was employed in calculating losses in system efficiency due to dust accumulation. The average efficiency reductions due to dust is 0.872%/day, energy loss is 9.935 kWh/m-sq using MLR model. 84 pp. Englisch. Bestandsnummer des Verkäufers 9786200091864
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Sharma SumitMr. Sumit Sharma has done his B.E. (Mechanical) from University of Rajasthan in 2008 and M.Tech (Thermal Engg.) from Rajasthan Technical University. He has 11 years experience of teaching in Mechanical Engg. & published m. Bestandsnummer des Verkäufers 293476713
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Solar energy has enormous potential to serve for present energy demand of the world. Photovoltaic is an elegant process of converting the sun energy into electricity. Photovoltaic cells become matchless in transforming the sunshine into electrical energy with no air and noise pollutions. In this work an effort had been made for estimating the effects of dust addition and ambient temperature on conversion efficiency of a 62 KWp Rooftop SPV module. The performance has been evaluated by use of Capacity Utilization Factor and Performance Ratio parameters. This work estimating the decrease in the output power and conversion efficiency as a function of dust accumulation & ambient temperature. A multivariate linear regressions (MLR) model is established to estimate the system's output performance with the consideration of conversion efficiency as the dependent variable and ambient temperature and dust exposure day as the independent variables. It was employed in calculating losses in system efficiency due to dust accumulation. The average efficiency reductions due to dust is 0.872%/day, energy loss is 9.935 kWh/m-sq using MLR model.Books on Demand GmbH, Überseering 33, 22297 Hamburg 84 pp. Englisch. Bestandsnummer des Verkäufers 9786200091864
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Solar energy has enormous potential to serve for present energy demand of the world. Photovoltaic is an elegant process of converting the sun energy into electricity. Photovoltaic cells become matchless in transforming the sunshine into electrical energy with no air and noise pollutions. In this work an effort had been made for estimating the effects of dust addition and ambient temperature on conversion efficiency of a 62 KWp Rooftop SPV module. The performance has been evaluated by use of Capacity Utilization Factor and Performance Ratio parameters. This work estimating the decrease in the output power and conversion efficiency as a function of dust accumulation & ambient temperature. A multivariate linear regressions (MLR) model is established to estimate the system's output performance with the consideration of conversion efficiency as the dependent variable and ambient temperature and dust exposure day as the independent variables. It was employed in calculating losses in system efficiency due to dust accumulation. The average efficiency reductions due to dust is 0.872%/day, energy loss is 9.935 kWh/m-sq using MLR model. Bestandsnummer des Verkäufers 9786200091864
Anzahl: 1 verfügbar