Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
K. Nirmalakumari è professore assistente (livello III) presso il Dipartimento di ECE, Bannari Amman Institute of Technology, Sathyamangalam.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT. 56 pp. Englisch. Bestandsnummer des Verkäufers 9786200434135
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: K NirmalakumariK. Nirmalakumari is an Assistant Professor (Level III), Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam.Microarray technology is used for monitoring thousands of genes at a similar time. Th. Bestandsnummer des Verkäufers 335816202
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT.Books on Demand GmbH, Überseering 33, 22297 Hamburg 56 pp. Englisch. Bestandsnummer des Verkäufers 9786200434135
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT. Bestandsnummer des Verkäufers 9786200434135
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Gene-Expression Based Cancer Classification From Microarray Data | Through Statistical Feature Selection | Nirmalakumari K (u. a.) | Taschenbuch | 56 S. | Englisch | 2019 | LAP LAMBERT Academic Publishing | EAN 9786200434135 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 117816354
Anzahl: 5 verfügbar